Metamath Proof Explorer


Theorem colinrel

Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion colinrel Rel Colinear

Proof

Step Hyp Ref Expression
1 relcnv Rel q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
2 df-colinear Colinear = q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
3 2 releqi Rel Colinear Rel q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
4 1 3 mpbir Rel Colinear