Metamath Proof Explorer


Theorem comfffval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses comfffval.o O=comp𝑓C
comfffval.b B=BaseC
comfffval.h H=HomC
comfffval.x ·˙=compC
Assertion comfffval O=xB×B,yBg2ndxHy,fHxgx·˙yf

Proof

Step Hyp Ref Expression
1 comfffval.o O=comp𝑓C
2 comfffval.b B=BaseC
3 comfffval.h H=HomC
4 comfffval.x ·˙=compC
5 fveq2 c=CBasec=BaseC
6 5 2 eqtr4di c=CBasec=B
7 6 sqxpeqd c=CBasec×Basec=B×B
8 fveq2 c=CHomc=HomC
9 8 3 eqtr4di c=CHomc=H
10 9 oveqd c=C2ndxHomcy=2ndxHy
11 9 fveq1d c=CHomcx=Hx
12 fveq2 c=Ccompc=compC
13 12 4 eqtr4di c=Ccompc=·˙
14 13 oveqd c=Cxcompcy=x·˙y
15 14 oveqd c=Cgxcompcyf=gx·˙yf
16 10 11 15 mpoeq123dv c=Cg2ndxHomcy,fHomcxgxcompcyf=g2ndxHy,fHxgx·˙yf
17 7 6 16 mpoeq123dv c=CxBasec×Basec,yBasecg2ndxHomcy,fHomcxgxcompcyf=xB×B,yBg2ndxHy,fHxgx·˙yf
18 df-comf comp𝑓=cVxBasec×Basec,yBasecg2ndxHomcy,fHomcxgxcompcyf
19 2 fvexi BV
20 19 19 xpex B×BV
21 20 19 mpoex xB×B,yBg2ndxHy,fHxgx·˙yfV
22 17 18 21 fvmpt CVcomp𝑓C=xB×B,yBg2ndxHy,fHxgx·˙yf
23 fvprc ¬CVcomp𝑓C=
24 fvprc ¬CVBaseC=
25 2 24 eqtrid ¬CVB=
26 25 olcd ¬CVB×B=B=
27 0mpo0 B×B=B=xB×B,yBg2ndxHy,fHxgx·˙yf=
28 26 27 syl ¬CVxB×B,yBg2ndxHy,fHxgx·˙yf=
29 23 28 eqtr4d ¬CVcomp𝑓C=xB×B,yBg2ndxHy,fHxgx·˙yf
30 22 29 pm2.61i comp𝑓C=xB×B,yBg2ndxHy,fHxgx·˙yf
31 1 30 eqtri O=xB×B,yBg2ndxHy,fHxgx·˙yf