Metamath Proof Explorer


Theorem con3dimp

Description: Variant of con3d with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis con3dimp.1 φψχ
Assertion con3dimp φ¬χ¬ψ

Proof

Step Hyp Ref Expression
1 con3dimp.1 φψχ
2 1 con3d φ¬χ¬ψ
3 2 imp φ¬χ¬ψ