Metamath Proof Explorer


Theorem constcncfg

Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses constcncfg.a φA
constcncfg.b φBC
constcncfg.c φC
Assertion constcncfg φxAB:AcnC

Proof

Step Hyp Ref Expression
1 constcncfg.a φA
2 constcncfg.b φBC
3 constcncfg.c φC
4 cncfmptc BCACxAB:AcnC
5 2 1 3 4 syl3anc φxAB:AcnC