Metamath Proof Explorer


Theorem constrfld

Description: The constructible numbers form a field. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Assertion constrfld fld 𝑠 Constr Field

Proof

Step Hyp Ref Expression
1 cnfldfld fld Field
2 constrsdrg Constr SubDRing fld
3 fldsdrgfld fld Field Constr SubDRing fld fld 𝑠 Constr Field
4 1 2 3 mp2an fld 𝑠 Constr Field