| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldfld |
|
| 2 |
1
|
a1i |
|
| 3 |
2
|
flddrngd |
|
| 4 |
3
|
drngringd |
|
| 5 |
3
|
drnggrpd |
|
| 6 |
|
simpr |
|
| 7 |
6
|
constrcn |
|
| 8 |
7
|
ex |
|
| 9 |
8
|
ssrdv |
|
| 10 |
|
1zzd |
|
| 11 |
10
|
zconstr |
|
| 12 |
11
|
ne0d |
|
| 13 |
|
simplr |
|
| 14 |
|
simpr |
|
| 15 |
13 14
|
constraddcl |
|
| 16 |
15
|
ralrimiva |
|
| 17 |
|
cnfldneg |
|
| 18 |
7 17
|
syl |
|
| 19 |
6
|
constrnegcl |
|
| 20 |
18 19
|
eqeltrd |
|
| 21 |
16 20
|
jca |
|
| 22 |
21
|
ralrimiva |
|
| 23 |
|
cnfldbas |
|
| 24 |
|
cnfldadd |
|
| 25 |
|
eqid |
|
| 26 |
23 24 25
|
issubg2 |
|
| 27 |
26
|
biimpar |
|
| 28 |
5 9 12 22 27
|
syl13anc |
|
| 29 |
13 14
|
constrmulcl |
|
| 30 |
29
|
anasss |
|
| 31 |
30
|
ralrimivva |
|
| 32 |
|
cnfld1 |
|
| 33 |
|
cnfldmul |
|
| 34 |
23 32 33
|
issubrg2 |
|
| 35 |
34
|
biimpar |
|
| 36 |
4 28 11 31 35
|
syl13anc |
|
| 37 |
|
simpr |
|
| 38 |
37
|
eldifad |
|
| 39 |
38
|
constrcn |
|
| 40 |
|
eldifsni |
|
| 41 |
40
|
adantl |
|
| 42 |
|
cnfldinv |
|
| 43 |
39 41 42
|
syl2anc |
|
| 44 |
38 41
|
constrinvcl |
|
| 45 |
43 44
|
eqeltrd |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
eqid |
|
| 48 |
|
cnfld0 |
|
| 49 |
47 48
|
issdrg2 |
|
| 50 |
3 36 46 49
|
syl3anbrc |
|
| 51 |
50
|
mptru |
|