| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Field ) |
| 3 |
2
|
flddrngd |
⊢ ( ⊤ → ℂfld ∈ DivRing ) |
| 4 |
3
|
drngringd |
⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 5 |
3
|
drnggrpd |
⊢ ( ⊤ → ℂfld ∈ Grp ) |
| 6 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → 𝑥 ∈ Constr ) |
| 7 |
6
|
constrcn |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → 𝑥 ∈ ℂ ) |
| 8 |
7
|
ex |
⊢ ( ⊤ → ( 𝑥 ∈ Constr → 𝑥 ∈ ℂ ) ) |
| 9 |
8
|
ssrdv |
⊢ ( ⊤ → Constr ⊆ ℂ ) |
| 10 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 11 |
10
|
zconstr |
⊢ ( ⊤ → 1 ∈ Constr ) |
| 12 |
11
|
ne0d |
⊢ ( ⊤ → Constr ≠ ∅ ) |
| 13 |
|
simplr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ Constr ) ∧ 𝑦 ∈ Constr ) → 𝑥 ∈ Constr ) |
| 14 |
|
simpr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ Constr ) ∧ 𝑦 ∈ Constr ) → 𝑦 ∈ Constr ) |
| 15 |
13 14
|
constraddcl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ Constr ) ∧ 𝑦 ∈ Constr ) → ( 𝑥 + 𝑦 ) ∈ Constr ) |
| 16 |
15
|
ralrimiva |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → ∀ 𝑦 ∈ Constr ( 𝑥 + 𝑦 ) ∈ Constr ) |
| 17 |
|
cnfldneg |
⊢ ( 𝑥 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) |
| 18 |
7 17
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) |
| 19 |
6
|
constrnegcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → - 𝑥 ∈ Constr ) |
| 20 |
18 19
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) |
| 21 |
16 20
|
jca |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Constr ) → ( ∀ 𝑦 ∈ Constr ( 𝑥 + 𝑦 ) ∈ Constr ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑥 ∈ Constr ( ∀ 𝑦 ∈ Constr ( 𝑥 + 𝑦 ) ∈ Constr ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) ) |
| 23 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 24 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 25 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
| 26 |
23 24 25
|
issubg2 |
⊢ ( ℂfld ∈ Grp → ( Constr ∈ ( SubGrp ‘ ℂfld ) ↔ ( Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀ 𝑥 ∈ Constr ( ∀ 𝑦 ∈ Constr ( 𝑥 + 𝑦 ) ∈ Constr ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) ) ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( ℂfld ∈ Grp ∧ ( Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀ 𝑥 ∈ Constr ( ∀ 𝑦 ∈ Constr ( 𝑥 + 𝑦 ) ∈ Constr ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) ) ) → Constr ∈ ( SubGrp ‘ ℂfld ) ) |
| 28 |
5 9 12 22 27
|
syl13anc |
⊢ ( ⊤ → Constr ∈ ( SubGrp ‘ ℂfld ) ) |
| 29 |
13 14
|
constrmulcl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ Constr ) ∧ 𝑦 ∈ Constr ) → ( 𝑥 · 𝑦 ) ∈ Constr ) |
| 30 |
29
|
anasss |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ Constr ∧ 𝑦 ∈ Constr ) ) → ( 𝑥 · 𝑦 ) ∈ Constr ) |
| 31 |
30
|
ralrimivva |
⊢ ( ⊤ → ∀ 𝑥 ∈ Constr ∀ 𝑦 ∈ Constr ( 𝑥 · 𝑦 ) ∈ Constr ) |
| 32 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 33 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 34 |
23 32 33
|
issubrg2 |
⊢ ( ℂfld ∈ Ring → ( Constr ∈ ( SubRing ‘ ℂfld ) ↔ ( Constr ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ Constr ∧ ∀ 𝑥 ∈ Constr ∀ 𝑦 ∈ Constr ( 𝑥 · 𝑦 ) ∈ Constr ) ) ) |
| 35 |
34
|
biimpar |
⊢ ( ( ℂfld ∈ Ring ∧ ( Constr ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ Constr ∧ ∀ 𝑥 ∈ Constr ∀ 𝑦 ∈ Constr ( 𝑥 · 𝑦 ) ∈ Constr ) ) → Constr ∈ ( SubRing ‘ ℂfld ) ) |
| 36 |
4 28 11 31 35
|
syl13anc |
⊢ ( ⊤ → Constr ∈ ( SubRing ‘ ℂfld ) ) |
| 37 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → 𝑥 ∈ ( Constr ∖ { 0 } ) ) |
| 38 |
37
|
eldifad |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → 𝑥 ∈ Constr ) |
| 39 |
38
|
constrcn |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
| 40 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( Constr ∖ { 0 } ) → 𝑥 ≠ 0 ) |
| 41 |
40
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 42 |
|
cnfldinv |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 43 |
39 41 42
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 44 |
38 41
|
constrinvcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → ( 1 / 𝑥 ) ∈ Constr ) |
| 45 |
43 44
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( Constr ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) |
| 46 |
45
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑥 ∈ ( Constr ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) |
| 47 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 48 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 49 |
47 48
|
issdrg2 |
⊢ ( Constr ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ Constr ∈ ( SubRing ‘ ℂfld ) ∧ ∀ 𝑥 ∈ ( Constr ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ Constr ) ) |
| 50 |
3 36 46 49
|
syl3anbrc |
⊢ ( ⊤ → Constr ∈ ( SubDRing ‘ ℂfld ) ) |
| 51 |
50
|
mptru |
⊢ Constr ∈ ( SubDRing ‘ ℂfld ) |