Metamath Proof Explorer


Theorem constraddcl

Description: Constructive numbers are closed under complex addition. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constraddcl.1 ( 𝜑𝑋 ∈ Constr )
constraddcl.2 ( 𝜑𝑌 ∈ Constr )
Assertion constraddcl ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ Constr )

Proof

Step Hyp Ref Expression
1 constraddcl.1 ( 𝜑𝑋 ∈ Constr )
2 constraddcl.2 ( 𝜑𝑌 ∈ Constr )
3 simpr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
4 3 oveq2d ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 + 𝑋 ) = ( 𝑋 + 𝑌 ) )
5 0nn0 0 ∈ ℕ0
6 5 a1i ( 𝜑 → 0 ∈ ℕ0 )
7 6 nn0constr ( 𝜑 → 0 ∈ Constr )
8 2re 2 ∈ ℝ
9 8 a1i ( 𝜑 → 2 ∈ ℝ )
10 1 constrcn ( 𝜑𝑋 ∈ ℂ )
11 10 10 addcld ( 𝜑 → ( 𝑋 + 𝑋 ) ∈ ℂ )
12 2cnd ( 𝜑 → 2 ∈ ℂ )
13 0cnd ( 𝜑 → 0 ∈ ℂ )
14 10 13 subcld ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ )
15 12 14 mulcld ( 𝜑 → ( 2 · ( 𝑋 − 0 ) ) ∈ ℂ )
16 15 addlidd ( 𝜑 → ( 0 + ( 2 · ( 𝑋 − 0 ) ) ) = ( 2 · ( 𝑋 − 0 ) ) )
17 10 subid1d ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 )
18 17 oveq2d ( 𝜑 → ( 2 · ( 𝑋 − 0 ) ) = ( 2 · 𝑋 ) )
19 10 2timesd ( 𝜑 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) )
20 16 18 19 3eqtrrd ( 𝜑 → ( 𝑋 + 𝑋 ) = ( 0 + ( 2 · ( 𝑋 − 0 ) ) ) )
21 10 10 pncand ( 𝜑 → ( ( 𝑋 + 𝑋 ) − 𝑋 ) = 𝑋 )
22 21 17 eqtr4d ( 𝜑 → ( ( 𝑋 + 𝑋 ) − 𝑋 ) = ( 𝑋 − 0 ) )
23 22 fveq2d ( 𝜑 → ( abs ‘ ( ( 𝑋 + 𝑋 ) − 𝑋 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) )
24 7 1 1 1 7 9 11 20 23 constrlccl ( 𝜑 → ( 𝑋 + 𝑋 ) ∈ Constr )
25 24 adantr ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 + 𝑋 ) ∈ Constr )
26 4 25 eqeltrrd ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 + 𝑌 ) ∈ Constr )
27 1 adantr ( ( 𝜑𝑋𝑌 ) → 𝑋 ∈ Constr )
28 2 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌 ∈ Constr )
29 7 adantr ( ( 𝜑𝑋𝑌 ) → 0 ∈ Constr )
30 10 adantr ( ( 𝜑𝑋𝑌 ) → 𝑋 ∈ ℂ )
31 2 constrcn ( 𝜑𝑌 ∈ ℂ )
32 31 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌 ∈ ℂ )
33 30 32 addcld ( ( 𝜑𝑋𝑌 ) → ( 𝑋 + 𝑌 ) ∈ ℂ )
34 simpr ( ( 𝜑𝑋𝑌 ) → 𝑋𝑌 )
35 30 32 pncan2d ( ( 𝜑𝑋𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = 𝑌 )
36 32 subid1d ( ( 𝜑𝑋𝑌 ) → ( 𝑌 − 0 ) = 𝑌 )
37 35 36 eqtr4d ( ( 𝜑𝑋𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = ( 𝑌 − 0 ) )
38 37 fveq2d ( ( 𝜑𝑋𝑌 ) → ( abs ‘ ( ( 𝑋 + 𝑌 ) − 𝑋 ) ) = ( abs ‘ ( 𝑌 − 0 ) ) )
39 30 32 pncand ( ( 𝜑𝑋𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑌 ) = 𝑋 )
40 30 subid1d ( ( 𝜑𝑋𝑌 ) → ( 𝑋 − 0 ) = 𝑋 )
41 39 40 eqtr4d ( ( 𝜑𝑋𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑌 ) = ( 𝑋 − 0 ) )
42 41 fveq2d ( ( 𝜑𝑋𝑌 ) → ( abs ‘ ( ( 𝑋 + 𝑌 ) − 𝑌 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) )
43 27 28 29 28 27 29 33 34 38 42 constrcccl ( ( 𝜑𝑋𝑌 ) → ( 𝑋 + 𝑌 ) ∈ Constr )
44 26 43 pm2.61dane ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ Constr )