| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constraddcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constraddcl.2 |
⊢ ( 𝜑 → 𝑌 ∈ Constr ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
| 4 |
3
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑋 + 𝑋 ) = ( 𝑋 + 𝑌 ) ) |
| 5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 7 |
6
|
nn0constr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 8 |
|
2re |
⊢ 2 ∈ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 10 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 11 |
10 10
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) ∈ ℂ ) |
| 12 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 13 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 14 |
10 13
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ ) |
| 15 |
12 14
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝑋 − 0 ) ) ∈ ℂ ) |
| 16 |
15
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 2 · ( 𝑋 − 0 ) ) ) = ( 2 · ( 𝑋 − 0 ) ) ) |
| 17 |
10
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 𝑋 − 0 ) ) = ( 2 · 𝑋 ) ) |
| 19 |
10
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| 20 |
16 18 19
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( 0 + ( 2 · ( 𝑋 − 0 ) ) ) ) |
| 21 |
10 10
|
pncand |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) − 𝑋 ) = 𝑋 ) |
| 22 |
21 17
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) − 𝑋 ) = ( 𝑋 − 0 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 + 𝑋 ) − 𝑋 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 24 |
7 1 1 1 7 9 11 20 23
|
constrlccl |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) ∈ Constr ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑋 + 𝑋 ) ∈ Constr ) |
| 26 |
4 25
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑋 + 𝑌 ) ∈ Constr ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ Constr ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ Constr ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 0 ∈ Constr ) |
| 30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ℂ ) |
| 31 |
2
|
constrcn |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ℂ ) |
| 33 |
30 32
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 + 𝑌 ) ∈ ℂ ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 35 |
30 32
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = 𝑌 ) |
| 36 |
32
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 − 0 ) = 𝑌 ) |
| 37 |
35 36
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = ( 𝑌 − 0 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( abs ‘ ( ( 𝑋 + 𝑌 ) − 𝑋 ) ) = ( abs ‘ ( 𝑌 − 0 ) ) ) |
| 39 |
30 32
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑌 ) = 𝑋 ) |
| 40 |
30
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 − 0 ) = 𝑋 ) |
| 41 |
39 40
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 + 𝑌 ) − 𝑌 ) = ( 𝑋 − 0 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( abs ‘ ( ( 𝑋 + 𝑌 ) − 𝑌 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 43 |
27 28 29 28 27 29 33 34 38 42
|
constrcccl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 + 𝑌 ) ∈ Constr ) |
| 44 |
26 43
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ Constr ) |