Metamath Proof Explorer


Theorem constrnegcl

Description: Constructible numbers are closed under additive inverse. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypothesis constrnegcl.1 ( 𝜑𝑋 ∈ Constr )
Assertion constrnegcl ( 𝜑 → - 𝑋 ∈ Constr )

Proof

Step Hyp Ref Expression
1 constrnegcl.1 ( 𝜑𝑋 ∈ Constr )
2 0nn0 0 ∈ ℕ0
3 2 a1i ( 𝜑 → 0 ∈ ℕ0 )
4 3 nn0constr ( 𝜑 → 0 ∈ Constr )
5 1red ( 𝜑 → 1 ∈ ℝ )
6 5 renegcld ( 𝜑 → - 1 ∈ ℝ )
7 1 constrcn ( 𝜑𝑋 ∈ ℂ )
8 7 negcld ( 𝜑 → - 𝑋 ∈ ℂ )
9 6 recnd ( 𝜑 → - 1 ∈ ℂ )
10 7 subid1d ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 )
11 10 7 eqeltrd ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ )
12 9 11 mulcld ( 𝜑 → ( - 1 · ( 𝑋 − 0 ) ) ∈ ℂ )
13 12 addlidd ( 𝜑 → ( 0 + ( - 1 · ( 𝑋 − 0 ) ) ) = ( - 1 · ( 𝑋 − 0 ) ) )
14 11 mulm1d ( 𝜑 → ( - 1 · ( 𝑋 − 0 ) ) = - ( 𝑋 − 0 ) )
15 10 negeqd ( 𝜑 → - ( 𝑋 − 0 ) = - 𝑋 )
16 13 14 15 3eqtrrd ( 𝜑 → - 𝑋 = ( 0 + ( - 1 · ( 𝑋 − 0 ) ) ) )
17 7 absnegd ( 𝜑 → ( abs ‘ - 𝑋 ) = ( abs ‘ 𝑋 ) )
18 8 subid1d ( 𝜑 → ( - 𝑋 − 0 ) = - 𝑋 )
19 18 fveq2d ( 𝜑 → ( abs ‘ ( - 𝑋 − 0 ) ) = ( abs ‘ - 𝑋 ) )
20 10 fveq2d ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) )
21 17 19 20 3eqtr4d ( 𝜑 → ( abs ‘ ( - 𝑋 − 0 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) )
22 4 1 4 1 4 6 8 16 21 constrlccl ( 𝜑 → - 𝑋 ∈ Constr )