| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrnegcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 4 |
3
|
nn0constr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 5 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 6 |
5
|
renegcld |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 7 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 8 |
7
|
negcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℂ ) |
| 9 |
6
|
recnd |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 10 |
7
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 11 |
10 7
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ ) |
| 12 |
9 11
|
mulcld |
⊢ ( 𝜑 → ( - 1 · ( 𝑋 − 0 ) ) ∈ ℂ ) |
| 13 |
12
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( - 1 · ( 𝑋 − 0 ) ) ) = ( - 1 · ( 𝑋 − 0 ) ) ) |
| 14 |
11
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · ( 𝑋 − 0 ) ) = - ( 𝑋 − 0 ) ) |
| 15 |
10
|
negeqd |
⊢ ( 𝜑 → - ( 𝑋 − 0 ) = - 𝑋 ) |
| 16 |
13 14 15
|
3eqtrrd |
⊢ ( 𝜑 → - 𝑋 = ( 0 + ( - 1 · ( 𝑋 − 0 ) ) ) ) |
| 17 |
7
|
absnegd |
⊢ ( 𝜑 → ( abs ‘ - 𝑋 ) = ( abs ‘ 𝑋 ) ) |
| 18 |
8
|
subid1d |
⊢ ( 𝜑 → ( - 𝑋 − 0 ) = - 𝑋 ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( - 𝑋 − 0 ) ) = ( abs ‘ - 𝑋 ) ) |
| 20 |
10
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 21 |
17 19 20
|
3eqtr4d |
⊢ ( 𝜑 → ( abs ‘ ( - 𝑋 − 0 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 22 |
4 1 4 1 4 6 8 16 21
|
constrlccl |
⊢ ( 𝜑 → - 𝑋 ∈ Constr ) |