Metamath Proof Explorer


Theorem constrnegcl

Description: Constructible numbers are closed under additive inverse. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypothesis constrnegcl.1
|- ( ph -> X e. Constr )
Assertion constrnegcl
|- ( ph -> -u X e. Constr )

Proof

Step Hyp Ref Expression
1 constrnegcl.1
 |-  ( ph -> X e. Constr )
2 0nn0
 |-  0 e. NN0
3 2 a1i
 |-  ( ph -> 0 e. NN0 )
4 3 nn0constr
 |-  ( ph -> 0 e. Constr )
5 1red
 |-  ( ph -> 1 e. RR )
6 5 renegcld
 |-  ( ph -> -u 1 e. RR )
7 1 constrcn
 |-  ( ph -> X e. CC )
8 7 negcld
 |-  ( ph -> -u X e. CC )
9 6 recnd
 |-  ( ph -> -u 1 e. CC )
10 7 subid1d
 |-  ( ph -> ( X - 0 ) = X )
11 10 7 eqeltrd
 |-  ( ph -> ( X - 0 ) e. CC )
12 9 11 mulcld
 |-  ( ph -> ( -u 1 x. ( X - 0 ) ) e. CC )
13 12 addlidd
 |-  ( ph -> ( 0 + ( -u 1 x. ( X - 0 ) ) ) = ( -u 1 x. ( X - 0 ) ) )
14 11 mulm1d
 |-  ( ph -> ( -u 1 x. ( X - 0 ) ) = -u ( X - 0 ) )
15 10 negeqd
 |-  ( ph -> -u ( X - 0 ) = -u X )
16 13 14 15 3eqtrrd
 |-  ( ph -> -u X = ( 0 + ( -u 1 x. ( X - 0 ) ) ) )
17 7 absnegd
 |-  ( ph -> ( abs ` -u X ) = ( abs ` X ) )
18 8 subid1d
 |-  ( ph -> ( -u X - 0 ) = -u X )
19 18 fveq2d
 |-  ( ph -> ( abs ` ( -u X - 0 ) ) = ( abs ` -u X ) )
20 10 fveq2d
 |-  ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) )
21 17 19 20 3eqtr4d
 |-  ( ph -> ( abs ` ( -u X - 0 ) ) = ( abs ` ( X - 0 ) ) )
22 4 1 4 1 4 6 8 16 21 constrlccl
 |-  ( ph -> -u X e. Constr )