| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrnegcl.1 |
|- ( ph -> X e. Constr ) |
| 2 |
|
0nn0 |
|- 0 e. NN0 |
| 3 |
2
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 4 |
3
|
nn0constr |
|- ( ph -> 0 e. Constr ) |
| 5 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 6 |
5
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
| 7 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 8 |
7
|
negcld |
|- ( ph -> -u X e. CC ) |
| 9 |
6
|
recnd |
|- ( ph -> -u 1 e. CC ) |
| 10 |
7
|
subid1d |
|- ( ph -> ( X - 0 ) = X ) |
| 11 |
10 7
|
eqeltrd |
|- ( ph -> ( X - 0 ) e. CC ) |
| 12 |
9 11
|
mulcld |
|- ( ph -> ( -u 1 x. ( X - 0 ) ) e. CC ) |
| 13 |
12
|
addlidd |
|- ( ph -> ( 0 + ( -u 1 x. ( X - 0 ) ) ) = ( -u 1 x. ( X - 0 ) ) ) |
| 14 |
11
|
mulm1d |
|- ( ph -> ( -u 1 x. ( X - 0 ) ) = -u ( X - 0 ) ) |
| 15 |
10
|
negeqd |
|- ( ph -> -u ( X - 0 ) = -u X ) |
| 16 |
13 14 15
|
3eqtrrd |
|- ( ph -> -u X = ( 0 + ( -u 1 x. ( X - 0 ) ) ) ) |
| 17 |
7
|
absnegd |
|- ( ph -> ( abs ` -u X ) = ( abs ` X ) ) |
| 18 |
8
|
subid1d |
|- ( ph -> ( -u X - 0 ) = -u X ) |
| 19 |
18
|
fveq2d |
|- ( ph -> ( abs ` ( -u X - 0 ) ) = ( abs ` -u X ) ) |
| 20 |
10
|
fveq2d |
|- ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 21 |
17 19 20
|
3eqtr4d |
|- ( ph -> ( abs ` ( -u X - 0 ) ) = ( abs ` ( X - 0 ) ) ) |
| 22 |
4 1 4 1 4 6 8 16 21
|
constrlccl |
|- ( ph -> -u X e. Constr ) |