| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zconstr.1 |
|- ( ph -> X e. ZZ ) |
| 2 |
|
simpr |
|- ( ( ph /\ X e. NN0 ) -> X e. NN0 ) |
| 3 |
2
|
nn0constr |
|- ( ( ph /\ X e. NN0 ) -> X e. Constr ) |
| 4 |
1
|
zcnd |
|- ( ph -> X e. CC ) |
| 5 |
4
|
negnegd |
|- ( ph -> -u -u X = X ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ -u X e. NN0 ) -> -u -u X = X ) |
| 7 |
|
simpr |
|- ( ( ph /\ -u X e. NN0 ) -> -u X e. NN0 ) |
| 8 |
7
|
nn0constr |
|- ( ( ph /\ -u X e. NN0 ) -> -u X e. Constr ) |
| 9 |
8
|
constrnegcl |
|- ( ( ph /\ -u X e. NN0 ) -> -u -u X e. Constr ) |
| 10 |
6 9
|
eqeltrrd |
|- ( ( ph /\ -u X e. NN0 ) -> X e. Constr ) |
| 11 |
|
elznn0 |
|- ( X e. ZZ <-> ( X e. RR /\ ( X e. NN0 \/ -u X e. NN0 ) ) ) |
| 12 |
1 11
|
sylib |
|- ( ph -> ( X e. RR /\ ( X e. NN0 \/ -u X e. NN0 ) ) ) |
| 13 |
12
|
simprd |
|- ( ph -> ( X e. NN0 \/ -u X e. NN0 ) ) |
| 14 |
3 10 13
|
mpjaodan |
|- ( ph -> X e. Constr ) |