Metamath Proof Explorer


Theorem zconstr

Description: Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025)

Ref Expression
Hypothesis zconstr.1
|- ( ph -> X e. ZZ )
Assertion zconstr
|- ( ph -> X e. Constr )

Proof

Step Hyp Ref Expression
1 zconstr.1
 |-  ( ph -> X e. ZZ )
2 simpr
 |-  ( ( ph /\ X e. NN0 ) -> X e. NN0 )
3 2 nn0constr
 |-  ( ( ph /\ X e. NN0 ) -> X e. Constr )
4 1 zcnd
 |-  ( ph -> X e. CC )
5 4 negnegd
 |-  ( ph -> -u -u X = X )
6 5 adantr
 |-  ( ( ph /\ -u X e. NN0 ) -> -u -u X = X )
7 simpr
 |-  ( ( ph /\ -u X e. NN0 ) -> -u X e. NN0 )
8 7 nn0constr
 |-  ( ( ph /\ -u X e. NN0 ) -> -u X e. Constr )
9 8 constrnegcl
 |-  ( ( ph /\ -u X e. NN0 ) -> -u -u X e. Constr )
10 6 9 eqeltrrd
 |-  ( ( ph /\ -u X e. NN0 ) -> X e. Constr )
11 elznn0
 |-  ( X e. ZZ <-> ( X e. RR /\ ( X e. NN0 \/ -u X e. NN0 ) ) )
12 1 11 sylib
 |-  ( ph -> ( X e. RR /\ ( X e. NN0 \/ -u X e. NN0 ) ) )
13 12 simprd
 |-  ( ph -> ( X e. NN0 \/ -u X e. NN0 ) )
14 3 10 13 mpjaodan
 |-  ( ph -> X e. Constr )