Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Constructible Numbers
zconstr
Next ⟩
constrdircl
Metamath Proof Explorer
Ascii
Unicode
Theorem
zconstr
Description:
Integers are constructible.
(Contributed by
Thierry Arnoux
, 3-Nov-2025)
Ref
Expression
Hypothesis
zconstr.1
⊢
φ
→
X
∈
ℤ
Assertion
zconstr
⊢
φ
→
X
∈
Constr
Proof
Step
Hyp
Ref
Expression
1
zconstr.1
⊢
φ
→
X
∈
ℤ
2
simpr
⊢
φ
∧
X
∈
ℕ
0
→
X
∈
ℕ
0
3
2
nn0constr
⊢
φ
∧
X
∈
ℕ
0
→
X
∈
Constr
4
1
zcnd
⊢
φ
→
X
∈
ℂ
5
4
negnegd
⊢
φ
→
−
−
X
=
X
6
5
adantr
⊢
φ
∧
−
X
∈
ℕ
0
→
−
−
X
=
X
7
simpr
⊢
φ
∧
−
X
∈
ℕ
0
→
−
X
∈
ℕ
0
8
7
nn0constr
⊢
φ
∧
−
X
∈
ℕ
0
→
−
X
∈
Constr
9
8
constrnegcl
⊢
φ
∧
−
X
∈
ℕ
0
→
−
−
X
∈
Constr
10
6
9
eqeltrrd
⊢
φ
∧
−
X
∈
ℕ
0
→
X
∈
Constr
11
elznn0
⊢
X
∈
ℤ
↔
X
∈
ℝ
∧
X
∈
ℕ
0
∨
−
X
∈
ℕ
0
12
1
11
sylib
⊢
φ
→
X
∈
ℝ
∧
X
∈
ℕ
0
∨
−
X
∈
ℕ
0
13
12
simprd
⊢
φ
→
X
∈
ℕ
0
∨
−
X
∈
ℕ
0
14
3
10
13
mpjaodan
⊢
φ
→
X
∈
Constr