Metamath Proof Explorer


Theorem zconstr

Description: Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025)

Ref Expression
Hypothesis zconstr.1 φ X
Assertion zconstr φ X Constr

Proof

Step Hyp Ref Expression
1 zconstr.1 φ X
2 simpr φ X 0 X 0
3 2 nn0constr φ X 0 X Constr
4 1 zcnd φ X
5 4 negnegd φ X = X
6 5 adantr φ X 0 X = X
7 simpr φ X 0 X 0
8 7 nn0constr φ X 0 X Constr
9 8 constrnegcl φ X 0 X Constr
10 6 9 eqeltrrd φ X 0 X Constr
11 elznn0 X X X 0 X 0
12 1 11 sylib φ X X 0 X 0
13 12 simprd φ X 0 X 0
14 3 10 13 mpjaodan φ X Constr