Metamath Proof Explorer


Theorem constrdircl

Description: Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constrdircl.x φ X Constr
constrdircl.1 φ X 0
Assertion constrdircl φ X X Constr

Proof

Step Hyp Ref Expression
1 constrdircl.x φ X Constr
2 constrdircl.1 φ X 0
3 0nn0 0 0
4 3 a1i φ 0 0
5 4 nn0constr φ 0 Constr
6 1nn0 1 0
7 6 a1i φ 1 0
8 7 nn0constr φ 1 Constr
9 1 constrcn φ X
10 9 abscld φ X
11 9 2 absne0d φ X 0
12 10 11 rereccld φ 1 X
13 10 recnd φ X
14 9 13 11 divcld φ X X
15 9 subid1d φ X 0 = X
16 15 oveq2d φ 1 X X 0 = 1 X X
17 12 recnd φ 1 X
18 15 9 eqeltrd φ X 0
19 17 18 mulcld φ 1 X X 0
20 19 addlidd φ 0 + 1 X X 0 = 1 X X 0
21 9 13 11 divrec2d φ X X = 1 X X
22 16 20 21 3eqtr4rd φ X X = 0 + 1 X X 0
23 1red φ 1
24 7 nn0ge0d φ 0 1
25 23 24 absidd φ 1 = 1
26 1m0e1 1 0 = 1
27 26 a1i φ 1 0 = 1
28 27 fveq2d φ 1 0 = 1
29 14 subid1d φ X X 0 = X X
30 29 fveq2d φ X X 0 = X X
31 9 13 11 absdivd φ X X = X X
32 absidm X X = X
33 9 32 syl φ X = X
34 33 oveq2d φ X X = X X
35 13 11 dividd φ X X = 1
36 34 35 eqtrd φ X X = 1
37 30 31 36 3eqtrd φ X X 0 = 1
38 25 28 37 3eqtr4rd φ X X 0 = 1 0
39 5 1 5 8 5 12 14 22 38 constrlccl φ X X Constr