Metamath Proof Explorer


Theorem iconstr

Description: The imaginary unit _i is constructible. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Assertion iconstr i Constr

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 a1i i
3 3nn0 3 0
4 3 a1i 3 0
5 4 nn0red 3
6 4 nn0ge0d 0 3
7 5 6 resqrtcld 3
8 7 recnd 3
9 2 8 absmuld i 3 = i 3
10 absi i = 1
11 7 mptru 3
12 3re 3
13 6 mptru 0 3
14 sqrtge0 3 0 3 0 3
15 12 13 14 mp2an 0 3
16 absid 3 0 3 3 = 3
17 11 15 16 mp2an 3 = 3
18 10 17 oveq12i i 3 = 1 3
19 8 mptru 3
20 19 mullidi 1 3 = 3
21 18 20 eqtri i 3 = 3
22 9 21 eqtrdi i 3 = 3
23 22 oveq2d i 3 i 3 = i 3 3
24 4 nn0cnd 3
25 3ne0 3 0
26 cnsqrt00 3 3 = 0 3 = 0
27 26 necon3bid 3 3 0 3 0
28 27 biimpar 3 3 0 3 0
29 24 25 28 sylancl 3 0
30 29 mptru 3 0
31 1 19 30 divcan4i i 3 3 = i
32 23 31 eqtrdi i 3 i 3 = i
33 1nn0 1 0
34 33 a1i 1 0
35 34 nn0constr 1 Constr
36 4 nn0constr 3 Constr
37 35 constrnegcl 1 Constr
38 2 8 mulcld i 3
39 1nn 1
40 nnneneg 1 1 1
41 39 40 mp1i 1 1
42 1cnd 1
43 42 38 subcld 1 i 3
44 43 abscld 1 i 3
45 2re 2
46 45 a1i 2
47 43 absge0d 0 1 i 3
48 0le2 0 2
49 48 a1i 0 2
50 1red 1
51 7 50 pythagreim 1 i 3 2 = 3 2 + 1 2
52 24 sqsqrtd 3 2 = 3
53 sq1 1 2 = 1
54 53 a1i 1 2 = 1
55 52 54 oveq12d 3 2 + 1 2 = 3 + 1
56 3p1e4 3 + 1 = 4
57 sq2 2 2 = 4
58 56 57 eqtr4i 3 + 1 = 2 2
59 55 58 eqtrdi 3 2 + 1 2 = 2 2
60 51 59 eqtrd 1 i 3 2 = 2 2
61 44 46 47 49 60 sq11d 1 i 3 = 2
62 38 42 abssubd i 3 1 = 1 i 3
63 5 50 resubcld 3 1
64 3m1e2 3 1 = 2
65 49 64 breqtrrdi 0 3 1
66 63 65 absidd 3 1 = 3 1
67 66 64 eqtrdi 3 1 = 2
68 61 62 67 3eqtr4d i 3 1 = 3 1
69 42 negcld 1
70 69 38 subcld - 1 - i 3
71 70 abscld - 1 - i 3
72 70 absge0d 0 - 1 - i 3
73 50 renegcld 1
74 7 73 pythagreim - 1 - i 3 2 = 3 2 + 1 2
75 neg1sqe1 1 2 = 1
76 75 a1i 1 2 = 1
77 52 76 oveq12d 3 2 + 1 2 = 3 + 1
78 77 58 eqtrdi 3 2 + 1 2 = 2 2
79 74 78 eqtrd - 1 - i 3 2 = 2 2
80 71 46 72 49 79 sq11d - 1 - i 3 = 2
81 38 69 abssubd i 3 -1 = - 1 - i 3
82 80 81 67 3eqtr4d i 3 -1 = 3 1
83 35 36 35 37 36 35 38 41 68 82 constrcccl i 3 Constr
84 ine0 i 0
85 84 a1i i 0
86 2 8 85 29 mulne0d i 3 0
87 83 86 constrdircl i 3 i 3 Constr
88 32 87 eqeltrrd i Constr
89 88 mptru i Constr