| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
1
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
| 3 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 4 |
3
|
a1i |
⊢ ( ⊤ → 3 ∈ ℕ0 ) |
| 5 |
4
|
nn0red |
⊢ ( ⊤ → 3 ∈ ℝ ) |
| 6 |
4
|
nn0ge0d |
⊢ ( ⊤ → 0 ≤ 3 ) |
| 7 |
5 6
|
resqrtcld |
⊢ ( ⊤ → ( √ ‘ 3 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ⊤ → ( √ ‘ 3 ) ∈ ℂ ) |
| 9 |
2 8
|
absmuld |
⊢ ( ⊤ → ( abs ‘ ( i · ( √ ‘ 3 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( √ ‘ 3 ) ) ) ) |
| 10 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
| 11 |
7
|
mptru |
⊢ ( √ ‘ 3 ) ∈ ℝ |
| 12 |
|
3re |
⊢ 3 ∈ ℝ |
| 13 |
6
|
mptru |
⊢ 0 ≤ 3 |
| 14 |
|
sqrtge0 |
⊢ ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → 0 ≤ ( √ ‘ 3 ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ 0 ≤ ( √ ‘ 3 ) |
| 16 |
|
absid |
⊢ ( ( ( √ ‘ 3 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 3 ) ) → ( abs ‘ ( √ ‘ 3 ) ) = ( √ ‘ 3 ) ) |
| 17 |
11 15 16
|
mp2an |
⊢ ( abs ‘ ( √ ‘ 3 ) ) = ( √ ‘ 3 ) |
| 18 |
10 17
|
oveq12i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( √ ‘ 3 ) ) ) = ( 1 · ( √ ‘ 3 ) ) |
| 19 |
8
|
mptru |
⊢ ( √ ‘ 3 ) ∈ ℂ |
| 20 |
19
|
mullidi |
⊢ ( 1 · ( √ ‘ 3 ) ) = ( √ ‘ 3 ) |
| 21 |
18 20
|
eqtri |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( √ ‘ 3 ) ) ) = ( √ ‘ 3 ) |
| 22 |
9 21
|
eqtrdi |
⊢ ( ⊤ → ( abs ‘ ( i · ( √ ‘ 3 ) ) ) = ( √ ‘ 3 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( ⊤ → ( ( i · ( √ ‘ 3 ) ) / ( abs ‘ ( i · ( √ ‘ 3 ) ) ) ) = ( ( i · ( √ ‘ 3 ) ) / ( √ ‘ 3 ) ) ) |
| 24 |
4
|
nn0cnd |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 25 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 26 |
|
cnsqrt00 |
⊢ ( 3 ∈ ℂ → ( ( √ ‘ 3 ) = 0 ↔ 3 = 0 ) ) |
| 27 |
26
|
necon3bid |
⊢ ( 3 ∈ ℂ → ( ( √ ‘ 3 ) ≠ 0 ↔ 3 ≠ 0 ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( √ ‘ 3 ) ≠ 0 ) |
| 29 |
24 25 28
|
sylancl |
⊢ ( ⊤ → ( √ ‘ 3 ) ≠ 0 ) |
| 30 |
29
|
mptru |
⊢ ( √ ‘ 3 ) ≠ 0 |
| 31 |
1 19 30
|
divcan4i |
⊢ ( ( i · ( √ ‘ 3 ) ) / ( √ ‘ 3 ) ) = i |
| 32 |
23 31
|
eqtrdi |
⊢ ( ⊤ → ( ( i · ( √ ‘ 3 ) ) / ( abs ‘ ( i · ( √ ‘ 3 ) ) ) ) = i ) |
| 33 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 34 |
33
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 35 |
34
|
nn0constr |
⊢ ( ⊤ → 1 ∈ Constr ) |
| 36 |
4
|
nn0constr |
⊢ ( ⊤ → 3 ∈ Constr ) |
| 37 |
35
|
constrnegcl |
⊢ ( ⊤ → - 1 ∈ Constr ) |
| 38 |
2 8
|
mulcld |
⊢ ( ⊤ → ( i · ( √ ‘ 3 ) ) ∈ ℂ ) |
| 39 |
|
1nn |
⊢ 1 ∈ ℕ |
| 40 |
|
nnneneg |
⊢ ( 1 ∈ ℕ → 1 ≠ - 1 ) |
| 41 |
39 40
|
mp1i |
⊢ ( ⊤ → 1 ≠ - 1 ) |
| 42 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 43 |
42 38
|
subcld |
⊢ ( ⊤ → ( 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ ) |
| 44 |
43
|
abscld |
⊢ ( ⊤ → ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) ∈ ℝ ) |
| 45 |
|
2re |
⊢ 2 ∈ ℝ |
| 46 |
45
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
| 47 |
43
|
absge0d |
⊢ ( ⊤ → 0 ≤ ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) ) |
| 48 |
|
0le2 |
⊢ 0 ≤ 2 |
| 49 |
48
|
a1i |
⊢ ( ⊤ → 0 ≤ 2 ) |
| 50 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 51 |
7 50
|
pythagreim |
⊢ ( ⊤ → ( ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) ↑ 2 ) = ( ( ( √ ‘ 3 ) ↑ 2 ) + ( 1 ↑ 2 ) ) ) |
| 52 |
24
|
sqsqrtd |
⊢ ( ⊤ → ( ( √ ‘ 3 ) ↑ 2 ) = 3 ) |
| 53 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 54 |
53
|
a1i |
⊢ ( ⊤ → ( 1 ↑ 2 ) = 1 ) |
| 55 |
52 54
|
oveq12d |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) ↑ 2 ) + ( 1 ↑ 2 ) ) = ( 3 + 1 ) ) |
| 56 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 57 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 58 |
56 57
|
eqtr4i |
⊢ ( 3 + 1 ) = ( 2 ↑ 2 ) |
| 59 |
55 58
|
eqtrdi |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) ↑ 2 ) + ( 1 ↑ 2 ) ) = ( 2 ↑ 2 ) ) |
| 60 |
51 59
|
eqtrd |
⊢ ( ⊤ → ( ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) ↑ 2 ) = ( 2 ↑ 2 ) ) |
| 61 |
44 46 47 49 60
|
sq11d |
⊢ ( ⊤ → ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) = 2 ) |
| 62 |
38 42
|
abssubd |
⊢ ( ⊤ → ( abs ‘ ( ( i · ( √ ‘ 3 ) ) − 1 ) ) = ( abs ‘ ( 1 − ( i · ( √ ‘ 3 ) ) ) ) ) |
| 63 |
5 50
|
resubcld |
⊢ ( ⊤ → ( 3 − 1 ) ∈ ℝ ) |
| 64 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 65 |
49 64
|
breqtrrdi |
⊢ ( ⊤ → 0 ≤ ( 3 − 1 ) ) |
| 66 |
63 65
|
absidd |
⊢ ( ⊤ → ( abs ‘ ( 3 − 1 ) ) = ( 3 − 1 ) ) |
| 67 |
66 64
|
eqtrdi |
⊢ ( ⊤ → ( abs ‘ ( 3 − 1 ) ) = 2 ) |
| 68 |
61 62 67
|
3eqtr4d |
⊢ ( ⊤ → ( abs ‘ ( ( i · ( √ ‘ 3 ) ) − 1 ) ) = ( abs ‘ ( 3 − 1 ) ) ) |
| 69 |
42
|
negcld |
⊢ ( ⊤ → - 1 ∈ ℂ ) |
| 70 |
69 38
|
subcld |
⊢ ( ⊤ → ( - 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ ) |
| 71 |
70
|
abscld |
⊢ ( ⊤ → ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) ∈ ℝ ) |
| 72 |
70
|
absge0d |
⊢ ( ⊤ → 0 ≤ ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) ) |
| 73 |
50
|
renegcld |
⊢ ( ⊤ → - 1 ∈ ℝ ) |
| 74 |
7 73
|
pythagreim |
⊢ ( ⊤ → ( ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) ↑ 2 ) = ( ( ( √ ‘ 3 ) ↑ 2 ) + ( - 1 ↑ 2 ) ) ) |
| 75 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
| 76 |
75
|
a1i |
⊢ ( ⊤ → ( - 1 ↑ 2 ) = 1 ) |
| 77 |
52 76
|
oveq12d |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) ↑ 2 ) + ( - 1 ↑ 2 ) ) = ( 3 + 1 ) ) |
| 78 |
77 58
|
eqtrdi |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) ↑ 2 ) + ( - 1 ↑ 2 ) ) = ( 2 ↑ 2 ) ) |
| 79 |
74 78
|
eqtrd |
⊢ ( ⊤ → ( ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) ↑ 2 ) = ( 2 ↑ 2 ) ) |
| 80 |
71 46 72 49 79
|
sq11d |
⊢ ( ⊤ → ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) = 2 ) |
| 81 |
38 69
|
abssubd |
⊢ ( ⊤ → ( abs ‘ ( ( i · ( √ ‘ 3 ) ) − - 1 ) ) = ( abs ‘ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ) ) |
| 82 |
80 81 67
|
3eqtr4d |
⊢ ( ⊤ → ( abs ‘ ( ( i · ( √ ‘ 3 ) ) − - 1 ) ) = ( abs ‘ ( 3 − 1 ) ) ) |
| 83 |
35 36 35 37 36 35 38 41 68 82
|
constrcccl |
⊢ ( ⊤ → ( i · ( √ ‘ 3 ) ) ∈ Constr ) |
| 84 |
|
ine0 |
⊢ i ≠ 0 |
| 85 |
84
|
a1i |
⊢ ( ⊤ → i ≠ 0 ) |
| 86 |
2 8 85 29
|
mulne0d |
⊢ ( ⊤ → ( i · ( √ ‘ 3 ) ) ≠ 0 ) |
| 87 |
83 86
|
constrdircl |
⊢ ( ⊤ → ( ( i · ( √ ‘ 3 ) ) / ( abs ‘ ( i · ( √ ‘ 3 ) ) ) ) ∈ Constr ) |
| 88 |
32 87
|
eqeltrrd |
⊢ ( ⊤ → i ∈ Constr ) |
| 89 |
88
|
mptru |
⊢ i ∈ Constr |