| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrremulcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constrremulcl.2 |
⊢ ( 𝜑 → 𝑌 ∈ Constr ) |
| 3 |
|
constrremulcl.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
|
constrremulcl.4 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 𝑋 = 0 ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ) |
| 7 |
4
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 𝑌 ∈ ℂ ) |
| 9 |
8
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 0 · 𝑌 ) = 0 ) |
| 10 |
6 9
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) |
| 11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 13 |
12
|
nn0constr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 0 ∈ Constr ) |
| 15 |
10 14
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑋 · 𝑌 ) ∈ Constr ) |
| 16 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 0 ∈ Constr ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ Constr ) |
| 18 |
|
iconstr |
⊢ i ∈ Constr |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → i ∈ Constr ) |
| 20 |
19
|
constrcn |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 21 |
20 7
|
mulcld |
⊢ ( 𝜑 → ( i · 𝑌 ) ∈ ℂ ) |
| 22 |
20
|
subid1d |
⊢ ( 𝜑 → ( i − 0 ) = i ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 · ( i − 0 ) ) = ( 𝑌 · i ) ) |
| 24 |
22 20
|
eqeltrd |
⊢ ( 𝜑 → ( i − 0 ) ∈ ℂ ) |
| 25 |
7 24
|
mulcld |
⊢ ( 𝜑 → ( 𝑌 · ( i − 0 ) ) ∈ ℂ ) |
| 26 |
25
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝑌 · ( i − 0 ) ) ) = ( 𝑌 · ( i − 0 ) ) ) |
| 27 |
20 7
|
mulcomd |
⊢ ( 𝜑 → ( i · 𝑌 ) = ( 𝑌 · i ) ) |
| 28 |
23 26 27
|
3eqtr4rd |
⊢ ( 𝜑 → ( i · 𝑌 ) = ( 0 + ( 𝑌 · ( i − 0 ) ) ) ) |
| 29 |
20 7
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( i · 𝑌 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝑌 ) ) ) |
| 30 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ( abs ‘ i ) = 1 ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ i ) · ( abs ‘ 𝑌 ) ) = ( 1 · ( abs ‘ 𝑌 ) ) ) |
| 33 |
7
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 35 |
34
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( abs ‘ 𝑌 ) ) = ( abs ‘ 𝑌 ) ) |
| 36 |
29 32 35
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( i · 𝑌 ) ) = ( abs ‘ 𝑌 ) ) |
| 37 |
21
|
subid1d |
⊢ ( 𝜑 → ( ( i · 𝑌 ) − 0 ) = ( i · 𝑌 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( i · 𝑌 ) − 0 ) ) = ( abs ‘ ( i · 𝑌 ) ) ) |
| 39 |
7
|
subid1d |
⊢ ( 𝜑 → ( 𝑌 − 0 ) = 𝑌 ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑌 − 0 ) ) = ( abs ‘ 𝑌 ) ) |
| 41 |
36 38 40
|
3eqtr4d |
⊢ ( 𝜑 → ( abs ‘ ( ( i · 𝑌 ) − 0 ) ) = ( abs ‘ ( 𝑌 − 0 ) ) ) |
| 42 |
13 19 13 2 13 4 21 28 41
|
constrlccl |
⊢ ( 𝜑 → ( i · 𝑌 ) ∈ Constr ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( i · 𝑌 ) ∈ Constr ) |
| 44 |
3
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 45 |
44 20
|
negsubd |
⊢ ( 𝜑 → ( 𝑋 + - i ) = ( 𝑋 − i ) ) |
| 46 |
19
|
constrnegcl |
⊢ ( 𝜑 → - i ∈ Constr ) |
| 47 |
1 46
|
constraddcl |
⊢ ( 𝜑 → ( 𝑋 + - i ) ∈ Constr ) |
| 48 |
45 47
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 − i ) ∈ Constr ) |
| 49 |
48 42
|
constraddcl |
⊢ ( 𝜑 → ( ( 𝑋 − i ) + ( i · 𝑌 ) ) ∈ Constr ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 𝑋 − i ) + ( i · 𝑌 ) ) ∈ Constr ) |
| 51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ ℝ ) |
| 52 |
44 7
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ ℂ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · 𝑌 ) ∈ ℂ ) |
| 54 |
44
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 − 0 ) ) = ( 𝑌 · 𝑋 ) ) |
| 56 |
54 44
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ ) |
| 57 |
7 56
|
mulcld |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 − 0 ) ) ∈ ℂ ) |
| 58 |
57
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝑌 · ( 𝑋 − 0 ) ) ) = ( 𝑌 · ( 𝑋 − 0 ) ) ) |
| 59 |
44 7
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 60 |
55 58 59
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 0 + ( 𝑌 · ( 𝑋 − 0 ) ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · 𝑌 ) = ( 0 + ( 𝑌 · ( 𝑋 − 0 ) ) ) ) |
| 62 |
44 20
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − i ) ∈ ℂ ) |
| 63 |
62 21
|
pncand |
⊢ ( 𝜑 → ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) = ( 𝑋 − i ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) = ( 𝑌 · ( 𝑋 − i ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( ( i · 𝑌 ) + ( 𝑌 · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) = ( ( i · 𝑌 ) + ( 𝑌 · ( 𝑋 − i ) ) ) ) |
| 66 |
7 44 20
|
subdid |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 − i ) ) = ( ( 𝑌 · 𝑋 ) − ( 𝑌 · i ) ) ) |
| 67 |
59 27
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) − ( i · 𝑌 ) ) = ( ( 𝑌 · 𝑋 ) − ( 𝑌 · i ) ) ) |
| 68 |
66 67
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 − i ) ) = ( ( 𝑋 · 𝑌 ) − ( i · 𝑌 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( i · 𝑌 ) + ( 𝑌 · ( 𝑋 − i ) ) ) = ( ( i · 𝑌 ) + ( ( 𝑋 · 𝑌 ) − ( i · 𝑌 ) ) ) ) |
| 70 |
21 52
|
pncan3d |
⊢ ( 𝜑 → ( ( i · 𝑌 ) + ( ( 𝑋 · 𝑌 ) − ( i · 𝑌 ) ) ) = ( 𝑋 · 𝑌 ) ) |
| 71 |
65 69 70
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( ( i · 𝑌 ) + ( 𝑌 · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · 𝑌 ) = ( ( i · 𝑌 ) + ( 𝑌 · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) ) |
| 73 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 0 ) ) = ( ∗ ‘ 𝑋 ) ) |
| 74 |
3
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) = 𝑋 ) |
| 75 |
73 74
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 0 ) ) = 𝑋 ) |
| 76 |
63 45
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) = ( 𝑋 + - i ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) = ( 𝑋 · ( 𝑋 + - i ) ) ) |
| 78 |
20
|
negcld |
⊢ ( 𝜑 → - i ∈ ℂ ) |
| 79 |
44 44 78
|
adddid |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑋 + - i ) ) = ( ( 𝑋 · 𝑋 ) + ( 𝑋 · - i ) ) ) |
| 80 |
44 78
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · - i ) = ( - i · 𝑋 ) ) |
| 81 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( - i · 𝑋 ) = ( i · - 𝑋 ) ) |
| 82 |
20 44 81
|
syl2anc |
⊢ ( 𝜑 → ( - i · 𝑋 ) = ( i · - 𝑋 ) ) |
| 83 |
80 82
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 · - i ) = ( i · - 𝑋 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑋 ) + ( 𝑋 · - i ) ) = ( ( 𝑋 · 𝑋 ) + ( i · - 𝑋 ) ) ) |
| 85 |
77 79 84
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) = ( ( 𝑋 · 𝑋 ) + ( i · - 𝑋 ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) = ( ℑ ‘ ( ( 𝑋 · 𝑋 ) + ( i · - 𝑋 ) ) ) ) |
| 87 |
3 3
|
remulcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑋 ) ∈ ℝ ) |
| 88 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℝ ) |
| 89 |
87 88
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝑋 · 𝑋 ) + ( i · - 𝑋 ) ) ) = - 𝑋 ) |
| 90 |
86 89
|
eqtrd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) = - 𝑋 ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) = - 𝑋 ) |
| 92 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
| 93 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 94 |
92 93
|
negne0d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → - 𝑋 ≠ 0 ) |
| 95 |
91 94
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑋 − 0 ) ) · ( ( ( 𝑋 − i ) + ( i · 𝑌 ) ) − ( i · 𝑌 ) ) ) ) ≠ 0 ) |
| 96 |
16 17 43 50 51 51 53 61 72 95
|
constrllcl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · 𝑌 ) ∈ Constr ) |
| 97 |
15 96
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ Constr ) |