| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0constr.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
eleq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 ∈ Constr ↔ 0 ∈ Constr ) ) |
| 3 |
|
eleq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ Constr ↔ 𝑛 ∈ Constr ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ∈ Constr ↔ ( 𝑛 + 1 ) ∈ Constr ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 ∈ Constr ↔ 𝑁 ∈ Constr ) ) |
| 6 |
|
peano1 |
⊢ ∅ ∈ ω |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ω ) |
| 8 |
|
fveq2 |
⊢ ( 𝑢 = ∅ → ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) = ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) |
| 9 |
8
|
eleq2d |
⊢ ( 𝑢 = ∅ → ( 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ↔ 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 = ∅ ) → ( 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ↔ 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) ) |
| 11 |
|
c0ex |
⊢ 0 ∈ V |
| 12 |
11
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ { 0 , 1 } ) |
| 14 |
|
constrcbvlem |
⊢ rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 15 |
14
|
constr0 |
⊢ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) = { 0 , 1 } |
| 16 |
13 15
|
eleqtrrdi |
⊢ ( 𝜑 → 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) |
| 17 |
7 10 16
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ω 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ) |
| 18 |
14
|
isconstr |
⊢ ( 0 ∈ Constr ↔ ∃ 𝑢 ∈ ω 0 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → 0 ∈ Constr ) |
| 21 |
8
|
eleq2d |
⊢ ( 𝑢 = ∅ → ( 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ↔ 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 = ∅ ) → ( 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ↔ 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) ) |
| 23 |
|
1ex |
⊢ 1 ∈ V |
| 24 |
23
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 1 ∈ { 0 , 1 } ) |
| 26 |
25 15
|
eleqtrrdi |
⊢ ( 𝜑 → 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ ∅ ) ) |
| 27 |
7 22 26
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ω 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ) |
| 28 |
14
|
isconstr |
⊢ ( 1 ∈ Constr ↔ ∃ 𝑢 ∈ ω 1 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑢 ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → 1 ∈ Constr ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → 𝑛 ∈ Constr ) |
| 32 |
|
peano2nn0 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 34 |
33
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( 𝑛 + 1 ) ∈ ℂ ) |
| 36 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
| 37 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℂ ) |
| 38 |
36 37
|
addcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℂ ) |
| 39 |
37
|
subid1d |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 − 0 ) = 1 ) |
| 40 |
39 37
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 − 0 ) ∈ ℂ ) |
| 41 |
38 40
|
mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 42 |
41
|
addlidd |
⊢ ( 𝑛 ∈ ℕ0 → ( 0 + ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) ) = ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) ) |
| 43 |
39
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) = ( ( 𝑛 + 1 ) · 1 ) ) |
| 44 |
38
|
mulridd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 + 1 ) · 1 ) = ( 𝑛 + 1 ) ) |
| 45 |
42 43 44
|
3eqtrrd |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) = ( 0 + ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) ) ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( 𝑛 + 1 ) = ( 0 + ( ( 𝑛 + 1 ) · ( 1 − 0 ) ) ) ) |
| 47 |
36 37
|
pncan2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 + 1 ) − 𝑛 ) = 1 ) |
| 48 |
47 39
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 + 1 ) − 𝑛 ) = ( 1 − 0 ) ) |
| 49 |
48
|
fveq2d |
⊢ ( 𝑛 ∈ ℕ0 → ( abs ‘ ( ( 𝑛 + 1 ) − 𝑛 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( abs ‘ ( ( 𝑛 + 1 ) − 𝑛 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 51 |
20 30 31 30 20 34 35 46 50
|
constrlccl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 ∈ Constr ) → ( 𝑛 + 1 ) ∈ Constr ) |
| 52 |
2 3 4 5 19 51
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ Constr ) |
| 53 |
1 52
|
mpdan |
⊢ ( 𝜑 → 𝑁 ∈ Constr ) |