Metamath Proof Explorer


Theorem constrcjcl

Description: Constructible numbers are closed under complex conjugate. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypothesis constrcjcl.1 ( 𝜑𝑋 ∈ Constr )
Assertion constrcjcl ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ Constr )

Proof

Step Hyp Ref Expression
1 constrcjcl.1 ( 𝜑𝑋 ∈ Constr )
2 constrcbvlem rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
3 2 isconstr ( 𝑋 ∈ Constr ↔ ∃ 𝑛 ∈ ω 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
4 1 3 sylib ( 𝜑 → ∃ 𝑛 ∈ ω 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
5 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
6 5 ad2antlr ( ( ( 𝜑𝑛 ∈ ω ) ∧ 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) ) → 𝑛 ∈ On )
7 simpr ( ( ( 𝜑𝑛 ∈ ω ) ∧ 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) ) → 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
8 2 6 7 constrconj ( ( ( 𝜑𝑛 ∈ ω ) ∧ 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) ) → ( ∗ ‘ 𝑋 ) ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
9 8 ex ( ( 𝜑𝑛 ∈ ω ) → ( 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) → ( ∗ ‘ 𝑋 ) ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) ) )
10 9 reximdva ( 𝜑 → ( ∃ 𝑛 ∈ ω 𝑋 ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) → ∃ 𝑛 ∈ ω ( ∗ ‘ 𝑋 ) ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) ) )
11 4 10 mpd ( 𝜑 → ∃ 𝑛 ∈ ω ( ∗ ‘ 𝑋 ) ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
12 2 isconstr ( ( ∗ ‘ 𝑋 ) ∈ Constr ↔ ∃ 𝑛 ∈ ω ( ∗ ‘ 𝑋 ) ∈ ( rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) ‘ 𝑛 ) )
13 11 12 sylibr ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ Constr )