| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcjcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
| 3 |
2
|
rered |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) = 𝑋 ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → 𝑋 ∈ Constr ) |
| 5 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) ∈ Constr ) |
| 6 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 7 |
6
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 0 ∈ Constr ) |
| 9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 10 |
9
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 1 ∈ Constr ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 𝑋 ∈ Constr ) |
| 13 |
1
|
constrcjcl |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ Constr ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ∗ ‘ 𝑋 ) ∈ Constr ) |
| 15 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 16 |
15
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) ∈ ℝ ) |
| 18 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( 1 / 2 ) ∈ ℝ ) |
| 20 |
16
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℂ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) ∈ ℂ ) |
| 22 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 23 |
22
|
subid1d |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 24 |
23 22
|
eqeltrd |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 25 |
20 24
|
mulcld |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 26 |
25
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) ) |
| 27 |
23
|
oveq2d |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( ℜ ‘ 𝑋 ) · 1 ) ) |
| 28 |
20
|
mulridd |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝑋 ) · 1 ) = ( ℜ ‘ 𝑋 ) ) |
| 29 |
26 27 28
|
3eqtrrd |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) = ( 0 + ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) = ( 0 + ( ( ℜ ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 31 |
15
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 32 |
15 31
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ∈ ℂ ) |
| 33 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 34 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 36 |
32 33 35
|
divrec2d |
⊢ ( 𝜑 → ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ) ) |
| 37 |
|
reval |
⊢ ( 𝑋 ∈ ℂ → ( ℜ ‘ 𝑋 ) = ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) ) |
| 38 |
15 37
|
syl |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) = ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) ) |
| 39 |
18
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 41 |
40 31 15
|
subdid |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = ( ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) − ( ( 1 / 2 ) · 𝑋 ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 1 / 2 ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) = ( 𝑋 + ( ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) − ( ( 1 / 2 ) · 𝑋 ) ) ) ) |
| 43 |
40 15
|
mulcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) · 𝑋 ) ∈ ℂ ) |
| 44 |
40 31
|
mulcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ∈ ℂ ) |
| 45 |
15 43 44
|
subadd23d |
⊢ ( 𝜑 → ( ( 𝑋 − ( ( 1 / 2 ) · 𝑋 ) ) + ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ) = ( 𝑋 + ( ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) − ( ( 1 / 2 ) · 𝑋 ) ) ) ) |
| 46 |
22 40 15
|
subdird |
⊢ ( 𝜑 → ( ( 1 − ( 1 / 2 ) ) · 𝑋 ) = ( ( 1 · 𝑋 ) − ( ( 1 / 2 ) · 𝑋 ) ) ) |
| 47 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 49 |
48
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 − ( 1 / 2 ) ) · 𝑋 ) = ( ( 1 / 2 ) · 𝑋 ) ) |
| 50 |
15
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · 𝑋 ) − ( ( 1 / 2 ) · 𝑋 ) ) = ( 𝑋 − ( ( 1 / 2 ) · 𝑋 ) ) ) |
| 52 |
46 49 51
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑋 − ( ( 1 / 2 ) · 𝑋 ) ) = ( ( 1 / 2 ) · 𝑋 ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 − ( ( 1 / 2 ) · 𝑋 ) ) + ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ) = ( ( ( 1 / 2 ) · 𝑋 ) + ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ) ) |
| 54 |
40 15 31
|
adddid |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ) = ( ( ( 1 / 2 ) · 𝑋 ) + ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ) ) |
| 55 |
53 54
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 − ( ( 1 / 2 ) · 𝑋 ) ) + ( ( 1 / 2 ) · ( ∗ ‘ 𝑋 ) ) ) = ( ( 1 / 2 ) · ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ) ) |
| 56 |
42 45 55
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 1 / 2 ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) = ( ( 1 / 2 ) · ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ) ) |
| 57 |
36 38 56
|
3eqtr4d |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) = ( 𝑋 + ( ( 1 / 2 ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) = ( 𝑋 + ( ( 1 / 2 ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) ) |
| 59 |
23
|
fveq2d |
⊢ ( 𝜑 → ( ∗ ‘ ( 1 − 0 ) ) = ( ∗ ‘ 1 ) ) |
| 60 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 61 |
60
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 1 ) = 1 ) |
| 62 |
59 61
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 1 − 0 ) ) = 1 ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 1 − 0 ) ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = ( 1 · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) |
| 64 |
31 15
|
subcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ∈ ℂ ) |
| 65 |
64
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) |
| 66 |
63 65
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 1 − 0 ) ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) |
| 67 |
66
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 1 − 0 ) ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( ( ∗ ‘ ( 1 − 0 ) ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) |
| 69 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → 𝑋 ∈ ℂ ) |
| 70 |
|
imval2 |
⊢ ( 𝑋 ∈ ℂ → ( ℑ ‘ 𝑋 ) = ( ( 𝑋 − ( ∗ ‘ 𝑋 ) ) / ( 2 · i ) ) ) |
| 71 |
15 70
|
syl |
⊢ ( 𝜑 → ( ℑ ‘ 𝑋 ) = ( ( 𝑋 − ( ∗ ‘ 𝑋 ) ) / ( 2 · i ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ 𝑋 ) = ( ( 𝑋 − ( ∗ ‘ 𝑋 ) ) / ( 2 · i ) ) ) |
| 73 |
15 31
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ∈ ℂ ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ∈ ℂ ) |
| 75 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ∈ ℂ ) |
| 76 |
75
|
imnegd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ - ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = - ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) |
| 77 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 78 |
77 69
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → - ( ( ∗ ‘ 𝑋 ) − 𝑋 ) = ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ - ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = ( ℑ ‘ ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ) |
| 80 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) |
| 81 |
80
|
negeqd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → - ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = - 0 ) |
| 82 |
76 79 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) = - 0 ) |
| 83 |
|
neg0 |
⊢ - 0 = 0 |
| 84 |
82 83
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) = 0 ) |
| 85 |
74 84
|
reim0bd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ∈ ℝ ) |
| 86 |
|
cjth |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ∈ ℝ ∧ ( i · ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ∈ ℝ ) ) |
| 87 |
15 86
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ∈ ℝ ∧ ( i · ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ∈ ℝ ) ) |
| 88 |
87
|
simprd |
⊢ ( 𝜑 → ( i · ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( i · ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 90 |
|
rimul |
⊢ ( ( ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ∈ ℝ ∧ ( i · ( 𝑋 − ( ∗ ‘ 𝑋 ) ) ) ∈ ℝ ) → ( 𝑋 − ( ∗ ‘ 𝑋 ) ) = 0 ) |
| 91 |
85 89 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 𝑋 − ( ∗ ‘ 𝑋 ) ) = 0 ) |
| 92 |
91
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ( 𝑋 − ( ∗ ‘ 𝑋 ) ) / ( 2 · i ) ) = ( 0 / ( 2 · i ) ) ) |
| 93 |
|
ax-icn |
⊢ i ∈ ℂ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 95 |
33 94
|
mulcld |
⊢ ( 𝜑 → ( 2 · i ) ∈ ℂ ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 2 · i ) ∈ ℂ ) |
| 97 |
|
ine0 |
⊢ i ≠ 0 |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → i ≠ 0 ) |
| 99 |
33 94 35 98
|
mulne0d |
⊢ ( 𝜑 → ( 2 · i ) ≠ 0 ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 2 · i ) ≠ 0 ) |
| 101 |
96 100
|
div0d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( 0 / ( 2 · i ) ) = 0 ) |
| 102 |
72 92 101
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → ( ℑ ‘ 𝑋 ) = 0 ) |
| 103 |
69 102
|
reim0bd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 ) → 𝑋 ∈ ℝ ) |
| 104 |
103
|
ex |
⊢ ( 𝜑 → ( ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) = 0 → 𝑋 ∈ ℝ ) ) |
| 105 |
104
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ℝ → ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ≠ 0 ) ) |
| 106 |
105
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ≠ 0 ) |
| 107 |
68 106
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( ( ∗ ‘ ( 1 − 0 ) ) · ( ( ∗ ‘ 𝑋 ) − 𝑋 ) ) ) ≠ 0 ) |
| 108 |
8 11 12 14 17 19 21 30 58 107
|
constrllcl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℜ ‘ 𝑋 ) ∈ Constr ) |
| 109 |
5 108
|
pm2.61dan |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ Constr ) |