| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcjcl.1 |
|
| 2 |
|
simpr |
|
| 3 |
2
|
rered |
|
| 4 |
1
|
adantr |
|
| 5 |
3 4
|
eqeltrd |
|
| 6 |
|
0zd |
|
| 7 |
6
|
zconstr |
|
| 8 |
7
|
adantr |
|
| 9 |
|
1zzd |
|
| 10 |
9
|
zconstr |
|
| 11 |
10
|
adantr |
|
| 12 |
1
|
adantr |
|
| 13 |
1
|
constrcjcl |
|
| 14 |
13
|
adantr |
|
| 15 |
1
|
constrcn |
|
| 16 |
15
|
recld |
|
| 17 |
16
|
adantr |
|
| 18 |
|
halfre |
|
| 19 |
18
|
a1i |
|
| 20 |
16
|
recnd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
1cnd |
|
| 23 |
22
|
subid1d |
|
| 24 |
23 22
|
eqeltrd |
|
| 25 |
20 24
|
mulcld |
|
| 26 |
25
|
addlidd |
|
| 27 |
23
|
oveq2d |
|
| 28 |
20
|
mulridd |
|
| 29 |
26 27 28
|
3eqtrrd |
|
| 30 |
29
|
adantr |
|
| 31 |
15
|
cjcld |
|
| 32 |
15 31
|
addcld |
|
| 33 |
|
2cnd |
|
| 34 |
|
2ne0 |
|
| 35 |
34
|
a1i |
|
| 36 |
32 33 35
|
divrec2d |
|
| 37 |
|
reval |
|
| 38 |
15 37
|
syl |
|
| 39 |
18
|
a1i |
|
| 40 |
39
|
recnd |
|
| 41 |
40 31 15
|
subdid |
|
| 42 |
41
|
oveq2d |
|
| 43 |
40 15
|
mulcld |
|
| 44 |
40 31
|
mulcld |
|
| 45 |
15 43 44
|
subadd23d |
|
| 46 |
22 40 15
|
subdird |
|
| 47 |
|
1mhlfehlf |
|
| 48 |
47
|
a1i |
|
| 49 |
48
|
oveq1d |
|
| 50 |
15
|
mullidd |
|
| 51 |
50
|
oveq1d |
|
| 52 |
46 49 51
|
3eqtr3rd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
40 15 31
|
adddid |
|
| 55 |
53 54
|
eqtr4d |
|
| 56 |
42 45 55
|
3eqtr2d |
|
| 57 |
36 38 56
|
3eqtr4d |
|
| 58 |
57
|
adantr |
|
| 59 |
23
|
fveq2d |
|
| 60 |
|
1red |
|
| 61 |
60
|
cjred |
|
| 62 |
59 61
|
eqtrd |
|
| 63 |
62
|
oveq1d |
|
| 64 |
31 15
|
subcld |
|
| 65 |
64
|
mullidd |
|
| 66 |
63 65
|
eqtrd |
|
| 67 |
66
|
fveq2d |
|
| 68 |
67
|
adantr |
|
| 69 |
15
|
adantr |
|
| 70 |
|
imval2 |
|
| 71 |
15 70
|
syl |
|
| 72 |
71
|
adantr |
|
| 73 |
15 31
|
subcld |
|
| 74 |
73
|
adantr |
|
| 75 |
64
|
adantr |
|
| 76 |
75
|
imnegd |
|
| 77 |
31
|
adantr |
|
| 78 |
77 69
|
negsubdi2d |
|
| 79 |
78
|
fveq2d |
|
| 80 |
|
simpr |
|
| 81 |
80
|
negeqd |
|
| 82 |
76 79 81
|
3eqtr3d |
|
| 83 |
|
neg0 |
|
| 84 |
82 83
|
eqtrdi |
|
| 85 |
74 84
|
reim0bd |
|
| 86 |
|
cjth |
|
| 87 |
15 86
|
syl |
|
| 88 |
87
|
simprd |
|
| 89 |
88
|
adantr |
|
| 90 |
|
rimul |
|
| 91 |
85 89 90
|
syl2anc |
|
| 92 |
91
|
oveq1d |
|
| 93 |
|
ax-icn |
|
| 94 |
93
|
a1i |
|
| 95 |
33 94
|
mulcld |
|
| 96 |
95
|
adantr |
|
| 97 |
|
ine0 |
|
| 98 |
97
|
a1i |
|
| 99 |
33 94 35 98
|
mulne0d |
|
| 100 |
99
|
adantr |
|
| 101 |
96 100
|
div0d |
|
| 102 |
72 92 101
|
3eqtrd |
|
| 103 |
69 102
|
reim0bd |
|
| 104 |
103
|
ex |
|
| 105 |
104
|
necon3bd |
|
| 106 |
105
|
imp |
|
| 107 |
68 106
|
eqnetrd |
|
| 108 |
8 11 12 14 17 19 21 30 58 107
|
constrllcl |
|
| 109 |
5 108
|
pm2.61dan |
|