Metamath Proof Explorer


Theorem constrrecl

Description: Constructible numbers are closed under taking the real part. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypothesis constrcjcl.1 φ X Constr
Assertion constrrecl φ X Constr

Proof

Step Hyp Ref Expression
1 constrcjcl.1 φ X Constr
2 simpr φ X X
3 2 rered φ X X = X
4 1 adantr φ X X Constr
5 3 4 eqeltrd φ X X Constr
6 0zd φ 0
7 6 zconstr φ 0 Constr
8 7 adantr φ ¬ X 0 Constr
9 1zzd φ 1
10 9 zconstr φ 1 Constr
11 10 adantr φ ¬ X 1 Constr
12 1 adantr φ ¬ X X Constr
13 1 constrcjcl φ X Constr
14 13 adantr φ ¬ X X Constr
15 1 constrcn φ X
16 15 recld φ X
17 16 adantr φ ¬ X X
18 halfre 1 2
19 18 a1i φ ¬ X 1 2
20 16 recnd φ X
21 20 adantr φ ¬ X X
22 1cnd φ 1
23 22 subid1d φ 1 0 = 1
24 23 22 eqeltrd φ 1 0
25 20 24 mulcld φ X 1 0
26 25 addlidd φ 0 + X 1 0 = X 1 0
27 23 oveq2d φ X 1 0 = X 1
28 20 mulridd φ X 1 = X
29 26 27 28 3eqtrrd φ X = 0 + X 1 0
30 29 adantr φ ¬ X X = 0 + X 1 0
31 15 cjcld φ X
32 15 31 addcld φ X + X
33 2cnd φ 2
34 2ne0 2 0
35 34 a1i φ 2 0
36 32 33 35 divrec2d φ X + X 2 = 1 2 X + X
37 reval X X = X + X 2
38 15 37 syl φ X = X + X 2
39 18 a1i φ 1 2
40 39 recnd φ 1 2
41 40 31 15 subdid φ 1 2 X X = 1 2 X 1 2 X
42 41 oveq2d φ X + 1 2 X X = X + 1 2 X - 1 2 X
43 40 15 mulcld φ 1 2 X
44 40 31 mulcld φ 1 2 X
45 15 43 44 subadd23d φ X - 1 2 X + 1 2 X = X + 1 2 X - 1 2 X
46 22 40 15 subdird φ 1 1 2 X = 1 X 1 2 X
47 1mhlfehlf 1 1 2 = 1 2
48 47 a1i φ 1 1 2 = 1 2
49 48 oveq1d φ 1 1 2 X = 1 2 X
50 15 mullidd φ 1 X = X
51 50 oveq1d φ 1 X 1 2 X = X 1 2 X
52 46 49 51 3eqtr3rd φ X 1 2 X = 1 2 X
53 52 oveq1d φ X - 1 2 X + 1 2 X = 1 2 X + 1 2 X
54 40 15 31 adddid φ 1 2 X + X = 1 2 X + 1 2 X
55 53 54 eqtr4d φ X - 1 2 X + 1 2 X = 1 2 X + X
56 42 45 55 3eqtr2d φ X + 1 2 X X = 1 2 X + X
57 36 38 56 3eqtr4d φ X = X + 1 2 X X
58 57 adantr φ ¬ X X = X + 1 2 X X
59 23 fveq2d φ 1 0 = 1
60 1red φ 1
61 60 cjred φ 1 = 1
62 59 61 eqtrd φ 1 0 = 1
63 62 oveq1d φ 1 0 X X = 1 X X
64 31 15 subcld φ X X
65 64 mullidd φ 1 X X = X X
66 63 65 eqtrd φ 1 0 X X = X X
67 66 fveq2d φ 1 0 X X = X X
68 67 adantr φ ¬ X 1 0 X X = X X
69 15 adantr φ X X = 0 X
70 imval2 X X = X X 2 i
71 15 70 syl φ X = X X 2 i
72 71 adantr φ X X = 0 X = X X 2 i
73 15 31 subcld φ X X
74 73 adantr φ X X = 0 X X
75 64 adantr φ X X = 0 X X
76 75 imnegd φ X X = 0 X X = X X
77 31 adantr φ X X = 0 X
78 77 69 negsubdi2d φ X X = 0 X X = X X
79 78 fveq2d φ X X = 0 X X = X X
80 simpr φ X X = 0 X X = 0
81 80 negeqd φ X X = 0 X X = 0
82 76 79 81 3eqtr3d φ X X = 0 X X = 0
83 neg0 0 = 0
84 82 83 eqtrdi φ X X = 0 X X = 0
85 74 84 reim0bd φ X X = 0 X X
86 cjth X X + X i X X
87 15 86 syl φ X + X i X X
88 87 simprd φ i X X
89 88 adantr φ X X = 0 i X X
90 rimul X X i X X X X = 0
91 85 89 90 syl2anc φ X X = 0 X X = 0
92 91 oveq1d φ X X = 0 X X 2 i = 0 2 i
93 ax-icn i
94 93 a1i φ i
95 33 94 mulcld φ 2 i
96 95 adantr φ X X = 0 2 i
97 ine0 i 0
98 97 a1i φ i 0
99 33 94 35 98 mulne0d φ 2 i 0
100 99 adantr φ X X = 0 2 i 0
101 96 100 div0d φ X X = 0 0 2 i = 0
102 72 92 101 3eqtrd φ X X = 0 X = 0
103 69 102 reim0bd φ X X = 0 X
104 103 ex φ X X = 0 X
105 104 necon3bd φ ¬ X X X 0
106 105 imp φ ¬ X X X 0
107 68 106 eqnetrd φ ¬ X 1 0 X X 0
108 8 11 12 14 17 19 21 30 58 107 constrllcl φ ¬ X X Constr
109 5 108 pm2.61dan φ X Constr