| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcjcl.1 |
|
| 2 |
|
0zd |
|
| 3 |
2
|
zconstr |
|
| 4 |
|
1zzd |
|
| 5 |
4
|
zconstr |
|
| 6 |
1
|
constrcn |
|
| 7 |
6
|
recld |
|
| 8 |
7
|
recnd |
|
| 9 |
|
ax-icn |
|
| 10 |
9
|
a1i |
|
| 11 |
6
|
imcld |
|
| 12 |
11
|
recnd |
|
| 13 |
10 12
|
mulcld |
|
| 14 |
6
|
replimd |
|
| 15 |
8 13 14
|
mvrladdd |
|
| 16 |
6 8
|
negsubd |
|
| 17 |
1
|
constrrecl |
|
| 18 |
17
|
constrnegcl |
|
| 19 |
1 18
|
constraddcl |
|
| 20 |
16 19
|
eqeltrrd |
|
| 21 |
15 20
|
eqeltrrd |
|
| 22 |
|
1m0e1 |
|
| 23 |
|
1cnd |
|
| 24 |
22 23
|
eqeltrid |
|
| 25 |
12 24
|
mulcld |
|
| 26 |
25
|
addlidd |
|
| 27 |
22
|
a1i |
|
| 28 |
27
|
oveq2d |
|
| 29 |
12
|
mulridd |
|
| 30 |
26 28 29
|
3eqtrrd |
|
| 31 |
10 12
|
absmuld |
|
| 32 |
|
absi |
|
| 33 |
32
|
a1i |
|
| 34 |
33
|
oveq1d |
|
| 35 |
12
|
abscld |
|
| 36 |
35
|
recnd |
|
| 37 |
36
|
mullidd |
|
| 38 |
31 34 37
|
3eqtrd |
|
| 39 |
13
|
subid1d |
|
| 40 |
39
|
fveq2d |
|
| 41 |
12
|
subid1d |
|
| 42 |
41
|
fveq2d |
|
| 43 |
38 40 42
|
3eqtr4rd |
|
| 44 |
3 5 3 21 3 11 12 30 43
|
constrlccl |
|