Metamath Proof Explorer


Theorem constrimcl

Description: Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypothesis constrcjcl.1 φ X Constr
Assertion constrimcl φ X Constr

Proof

Step Hyp Ref Expression
1 constrcjcl.1 φ X Constr
2 0zd φ 0
3 2 zconstr φ 0 Constr
4 1zzd φ 1
5 4 zconstr φ 1 Constr
6 1 constrcn φ X
7 6 recld φ X
8 7 recnd φ X
9 ax-icn i
10 9 a1i φ i
11 6 imcld φ X
12 11 recnd φ X
13 10 12 mulcld φ i X
14 6 replimd φ X = X + i X
15 8 13 14 mvrladdd φ X X = i X
16 6 8 negsubd φ X + X = X X
17 1 constrrecl φ X Constr
18 17 constrnegcl φ X Constr
19 1 18 constraddcl φ X + X Constr
20 16 19 eqeltrrd φ X X Constr
21 15 20 eqeltrrd φ i X Constr
22 1m0e1 1 0 = 1
23 1cnd φ 1
24 22 23 eqeltrid φ 1 0
25 12 24 mulcld φ X 1 0
26 25 addlidd φ 0 + X 1 0 = X 1 0
27 22 a1i φ 1 0 = 1
28 27 oveq2d φ X 1 0 = X 1
29 12 mulridd φ X 1 = X
30 26 28 29 3eqtrrd φ X = 0 + X 1 0
31 10 12 absmuld φ i X = i X
32 absi i = 1
33 32 a1i φ i = 1
34 33 oveq1d φ i X = 1 X
35 12 abscld φ X
36 35 recnd φ X
37 36 mullidd φ 1 X = X
38 31 34 37 3eqtrd φ i X = X
39 13 subid1d φ i X 0 = i X
40 39 fveq2d φ i X 0 = i X
41 12 subid1d φ X 0 = X
42 41 fveq2d φ X 0 = X
43 38 40 42 3eqtr4rd φ X 0 = i X 0
44 3 5 3 21 3 11 12 30 43 constrlccl φ X Constr