| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constraddcl.1 |
|
| 2 |
|
constraddcl.2 |
|
| 3 |
|
simpr |
|
| 4 |
3
|
oveq2d |
|
| 5 |
|
0nn0 |
|
| 6 |
5
|
a1i |
|
| 7 |
6
|
nn0constr |
|
| 8 |
|
2re |
|
| 9 |
8
|
a1i |
|
| 10 |
1
|
constrcn |
|
| 11 |
10 10
|
addcld |
|
| 12 |
|
2cnd |
|
| 13 |
|
0cnd |
|
| 14 |
10 13
|
subcld |
|
| 15 |
12 14
|
mulcld |
|
| 16 |
15
|
addlidd |
|
| 17 |
10
|
subid1d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
10
|
2timesd |
|
| 20 |
16 18 19
|
3eqtrrd |
|
| 21 |
10 10
|
pncand |
|
| 22 |
21 17
|
eqtr4d |
|
| 23 |
22
|
fveq2d |
|
| 24 |
7 1 1 1 7 9 11 20 23
|
constrlccl |
|
| 25 |
24
|
adantr |
|
| 26 |
4 25
|
eqeltrrd |
|
| 27 |
1
|
adantr |
|
| 28 |
2
|
adantr |
|
| 29 |
7
|
adantr |
|
| 30 |
10
|
adantr |
|
| 31 |
2
|
constrcn |
|
| 32 |
31
|
adantr |
|
| 33 |
30 32
|
addcld |
|
| 34 |
|
simpr |
|
| 35 |
30 32
|
pncan2d |
|
| 36 |
32
|
subid1d |
|
| 37 |
35 36
|
eqtr4d |
|
| 38 |
37
|
fveq2d |
|
| 39 |
30 32
|
pncand |
|
| 40 |
30
|
subid1d |
|
| 41 |
39 40
|
eqtr4d |
|
| 42 |
41
|
fveq2d |
|
| 43 |
27 28 29 28 27 29 33 34 38 42
|
constrcccl |
|
| 44 |
26 43
|
pm2.61dane |
|