Metamath Proof Explorer


Theorem constrnegcl

Description: Constructible numbers are closed under additive inverse. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypothesis constrnegcl.1 φ X Constr
Assertion constrnegcl φ X Constr

Proof

Step Hyp Ref Expression
1 constrnegcl.1 φ X Constr
2 0nn0 0 0
3 2 a1i φ 0 0
4 3 nn0constr φ 0 Constr
5 1red φ 1
6 5 renegcld φ 1
7 1 constrcn φ X
8 7 negcld φ X
9 6 recnd φ 1
10 7 subid1d φ X 0 = X
11 10 7 eqeltrd φ X 0
12 9 11 mulcld φ -1 X 0
13 12 addlidd φ 0 + -1 X 0 = -1 X 0
14 11 mulm1d φ -1 X 0 = X 0
15 10 negeqd φ X 0 = X
16 13 14 15 3eqtrrd φ X = 0 + -1 X 0
17 7 absnegd φ X = X
18 8 subid1d φ - X - 0 = X
19 18 fveq2d φ - X - 0 = X
20 10 fveq2d φ X 0 = X
21 17 19 20 3eqtr4d φ - X - 0 = X 0
22 4 1 4 1 4 6 8 16 21 constrlccl φ X Constr