| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcjcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 3 |
2
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 4 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 5 |
4
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 6 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 7 |
6
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℂ ) |
| 9 |
|
ax-icn |
⊢ i ∈ ℂ |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 11 |
6
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝑋 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝑋 ) ∈ ℂ ) |
| 13 |
10 12
|
mulcld |
⊢ ( 𝜑 → ( i · ( ℑ ‘ 𝑋 ) ) ∈ ℂ ) |
| 14 |
6
|
replimd |
⊢ ( 𝜑 → 𝑋 = ( ( ℜ ‘ 𝑋 ) + ( i · ( ℑ ‘ 𝑋 ) ) ) ) |
| 15 |
8 13 14
|
mvrladdd |
⊢ ( 𝜑 → ( 𝑋 − ( ℜ ‘ 𝑋 ) ) = ( i · ( ℑ ‘ 𝑋 ) ) ) |
| 16 |
6 8
|
negsubd |
⊢ ( 𝜑 → ( 𝑋 + - ( ℜ ‘ 𝑋 ) ) = ( 𝑋 − ( ℜ ‘ 𝑋 ) ) ) |
| 17 |
1
|
constrrecl |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ Constr ) |
| 18 |
17
|
constrnegcl |
⊢ ( 𝜑 → - ( ℜ ‘ 𝑋 ) ∈ Constr ) |
| 19 |
1 18
|
constraddcl |
⊢ ( 𝜑 → ( 𝑋 + - ( ℜ ‘ 𝑋 ) ) ∈ Constr ) |
| 20 |
16 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 − ( ℜ ‘ 𝑋 ) ) ∈ Constr ) |
| 21 |
15 20
|
eqeltrrd |
⊢ ( 𝜑 → ( i · ( ℑ ‘ 𝑋 ) ) ∈ Constr ) |
| 22 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 23 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 24 |
22 23
|
eqeltrid |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 25 |
12 24
|
mulcld |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 26 |
25
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( ℑ ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( ℑ ‘ 𝑋 ) · ( 1 − 0 ) ) ) |
| 27 |
22
|
a1i |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( ℑ ‘ 𝑋 ) · 1 ) ) |
| 29 |
12
|
mulridd |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝑋 ) · 1 ) = ( ℑ ‘ 𝑋 ) ) |
| 30 |
26 28 29
|
3eqtrrd |
⊢ ( 𝜑 → ( ℑ ‘ 𝑋 ) = ( 0 + ( ( ℑ ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 31 |
10 12
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( i · ( ℑ ‘ 𝑋 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) ) |
| 32 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ( abs ‘ i ) = 1 ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) ) |
| 35 |
12
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝑋 ) ) ∈ ℝ ) |
| 36 |
35
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝑋 ) ) ∈ ℂ ) |
| 37 |
36
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) = ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) |
| 38 |
31 34 37
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( i · ( ℑ ‘ 𝑋 ) ) ) = ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) |
| 39 |
13
|
subid1d |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝑋 ) ) − 0 ) = ( i · ( ℑ ‘ 𝑋 ) ) ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( i · ( ℑ ‘ 𝑋 ) ) − 0 ) ) = ( abs ‘ ( i · ( ℑ ‘ 𝑋 ) ) ) ) |
| 41 |
12
|
subid1d |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝑋 ) − 0 ) = ( ℑ ‘ 𝑋 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( ℑ ‘ 𝑋 ) ) ) |
| 43 |
38 40 42
|
3eqtr4rd |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( ( i · ( ℑ ‘ 𝑋 ) ) − 0 ) ) ) |
| 44 |
3 5 3 21 3 11 12 30 43
|
constrlccl |
⊢ ( 𝜑 → ( ℑ ‘ 𝑋 ) ∈ Constr ) |