Metamath Proof Explorer


Theorem zconstr

Description: Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025)

Ref Expression
Hypothesis zconstr.1 ( 𝜑𝑋 ∈ ℤ )
Assertion zconstr ( 𝜑𝑋 ∈ Constr )

Proof

Step Hyp Ref Expression
1 zconstr.1 ( 𝜑𝑋 ∈ ℤ )
2 simpr ( ( 𝜑𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 )
3 2 nn0constr ( ( 𝜑𝑋 ∈ ℕ0 ) → 𝑋 ∈ Constr )
4 1 zcnd ( 𝜑𝑋 ∈ ℂ )
5 4 negnegd ( 𝜑 → - - 𝑋 = 𝑋 )
6 5 adantr ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - - 𝑋 = 𝑋 )
7 simpr ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - 𝑋 ∈ ℕ0 )
8 7 nn0constr ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - 𝑋 ∈ Constr )
9 8 constrnegcl ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - - 𝑋 ∈ Constr )
10 6 9 eqeltrrd ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → 𝑋 ∈ Constr )
11 elznn0 ( 𝑋 ∈ ℤ ↔ ( 𝑋 ∈ ℝ ∧ ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) ) )
12 1 11 sylib ( 𝜑 → ( 𝑋 ∈ ℝ ∧ ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) ) )
13 12 simprd ( 𝜑 → ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) )
14 3 10 13 mpjaodan ( 𝜑𝑋 ∈ Constr )