| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zconstr.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
| 2 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 ) |
| 3 |
2
|
nn0constr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ Constr ) |
| 4 |
1
|
zcnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 5 |
4
|
negnegd |
⊢ ( 𝜑 → - - 𝑋 = 𝑋 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - - 𝑋 = 𝑋 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - 𝑋 ∈ ℕ0 ) |
| 8 |
7
|
nn0constr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - 𝑋 ∈ Constr ) |
| 9 |
8
|
constrnegcl |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → - - 𝑋 ∈ Constr ) |
| 10 |
6 9
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℕ0 ) → 𝑋 ∈ Constr ) |
| 11 |
|
elznn0 |
⊢ ( 𝑋 ∈ ℤ ↔ ( 𝑋 ∈ ℝ ∧ ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) ) ) |
| 12 |
1 11
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) ) ) |
| 13 |
12
|
simprd |
⊢ ( 𝜑 → ( 𝑋 ∈ ℕ0 ∨ - 𝑋 ∈ ℕ0 ) ) |
| 14 |
3 10 13
|
mpjaodan |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |