| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrdircl.x |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constrdircl.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 5 |
4
|
nn0constr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 8 |
7
|
nn0constr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 9 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 10 |
9
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 11 |
9 2
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 12 |
10 11
|
rereccld |
⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ ) |
| 13 |
10
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 14 |
9 13 11
|
divcld |
⊢ ( 𝜑 → ( 𝑋 / ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 15 |
9
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( 𝑋 − 0 ) ) = ( ( 1 / ( abs ‘ 𝑋 ) ) · 𝑋 ) ) |
| 17 |
12
|
recnd |
⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 18 |
15 9
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 − 0 ) ∈ ℂ ) |
| 19 |
17 18
|
mulcld |
⊢ ( 𝜑 → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( 𝑋 − 0 ) ) ∈ ℂ ) |
| 20 |
19
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( 1 / ( abs ‘ 𝑋 ) ) · ( 𝑋 − 0 ) ) ) = ( ( 1 / ( abs ‘ 𝑋 ) ) · ( 𝑋 − 0 ) ) ) |
| 21 |
9 13 11
|
divrec2d |
⊢ ( 𝜑 → ( 𝑋 / ( abs ‘ 𝑋 ) ) = ( ( 1 / ( abs ‘ 𝑋 ) ) · 𝑋 ) ) |
| 22 |
16 20 21
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑋 / ( abs ‘ 𝑋 ) ) = ( 0 + ( ( 1 / ( abs ‘ 𝑋 ) ) · ( 𝑋 − 0 ) ) ) ) |
| 23 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 24 |
7
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 25 |
23 24
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 1 ) = 1 ) |
| 26 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 1 − 0 ) ) = ( abs ‘ 1 ) ) |
| 29 |
14
|
subid1d |
⊢ ( 𝜑 → ( ( 𝑋 / ( abs ‘ 𝑋 ) ) − 0 ) = ( 𝑋 / ( abs ‘ 𝑋 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 / ( abs ‘ 𝑋 ) ) − 0 ) ) = ( abs ‘ ( 𝑋 / ( abs ‘ 𝑋 ) ) ) ) |
| 31 |
9 13 11
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 / ( abs ‘ 𝑋 ) ) ) = ( ( abs ‘ 𝑋 ) / ( abs ‘ ( abs ‘ 𝑋 ) ) ) ) |
| 32 |
|
absidm |
⊢ ( 𝑋 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 33 |
9 32
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ ( abs ‘ 𝑋 ) ) ) = ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| 35 |
13 11
|
dividd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = 1 ) |
| 36 |
34 35
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ ( abs ‘ 𝑋 ) ) ) = 1 ) |
| 37 |
30 31 36
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 / ( abs ‘ 𝑋 ) ) − 0 ) ) = 1 ) |
| 38 |
25 28 37
|
3eqtr4rd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 / ( abs ‘ 𝑋 ) ) − 0 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 39 |
5 1 5 8 5 12 14 22 38
|
constrlccl |
⊢ ( 𝜑 → ( 𝑋 / ( abs ‘ 𝑋 ) ) ∈ Constr ) |