| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrdircl.x |
|- ( ph -> X e. Constr ) |
| 2 |
|
constrdircl.1 |
|- ( ph -> X =/= 0 ) |
| 3 |
|
0nn0 |
|- 0 e. NN0 |
| 4 |
3
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 5 |
4
|
nn0constr |
|- ( ph -> 0 e. Constr ) |
| 6 |
|
1nn0 |
|- 1 e. NN0 |
| 7 |
6
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 8 |
7
|
nn0constr |
|- ( ph -> 1 e. Constr ) |
| 9 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 10 |
9
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
| 11 |
9 2
|
absne0d |
|- ( ph -> ( abs ` X ) =/= 0 ) |
| 12 |
10 11
|
rereccld |
|- ( ph -> ( 1 / ( abs ` X ) ) e. RR ) |
| 13 |
10
|
recnd |
|- ( ph -> ( abs ` X ) e. CC ) |
| 14 |
9 13 11
|
divcld |
|- ( ph -> ( X / ( abs ` X ) ) e. CC ) |
| 15 |
9
|
subid1d |
|- ( ph -> ( X - 0 ) = X ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( ( 1 / ( abs ` X ) ) x. ( X - 0 ) ) = ( ( 1 / ( abs ` X ) ) x. X ) ) |
| 17 |
12
|
recnd |
|- ( ph -> ( 1 / ( abs ` X ) ) e. CC ) |
| 18 |
15 9
|
eqeltrd |
|- ( ph -> ( X - 0 ) e. CC ) |
| 19 |
17 18
|
mulcld |
|- ( ph -> ( ( 1 / ( abs ` X ) ) x. ( X - 0 ) ) e. CC ) |
| 20 |
19
|
addlidd |
|- ( ph -> ( 0 + ( ( 1 / ( abs ` X ) ) x. ( X - 0 ) ) ) = ( ( 1 / ( abs ` X ) ) x. ( X - 0 ) ) ) |
| 21 |
9 13 11
|
divrec2d |
|- ( ph -> ( X / ( abs ` X ) ) = ( ( 1 / ( abs ` X ) ) x. X ) ) |
| 22 |
16 20 21
|
3eqtr4rd |
|- ( ph -> ( X / ( abs ` X ) ) = ( 0 + ( ( 1 / ( abs ` X ) ) x. ( X - 0 ) ) ) ) |
| 23 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 24 |
7
|
nn0ge0d |
|- ( ph -> 0 <_ 1 ) |
| 25 |
23 24
|
absidd |
|- ( ph -> ( abs ` 1 ) = 1 ) |
| 26 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 27 |
26
|
a1i |
|- ( ph -> ( 1 - 0 ) = 1 ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) ) |
| 29 |
14
|
subid1d |
|- ( ph -> ( ( X / ( abs ` X ) ) - 0 ) = ( X / ( abs ` X ) ) ) |
| 30 |
29
|
fveq2d |
|- ( ph -> ( abs ` ( ( X / ( abs ` X ) ) - 0 ) ) = ( abs ` ( X / ( abs ` X ) ) ) ) |
| 31 |
9 13 11
|
absdivd |
|- ( ph -> ( abs ` ( X / ( abs ` X ) ) ) = ( ( abs ` X ) / ( abs ` ( abs ` X ) ) ) ) |
| 32 |
|
absidm |
|- ( X e. CC -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 33 |
9 32
|
syl |
|- ( ph -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 34 |
33
|
oveq2d |
|- ( ph -> ( ( abs ` X ) / ( abs ` ( abs ` X ) ) ) = ( ( abs ` X ) / ( abs ` X ) ) ) |
| 35 |
13 11
|
dividd |
|- ( ph -> ( ( abs ` X ) / ( abs ` X ) ) = 1 ) |
| 36 |
34 35
|
eqtrd |
|- ( ph -> ( ( abs ` X ) / ( abs ` ( abs ` X ) ) ) = 1 ) |
| 37 |
30 31 36
|
3eqtrd |
|- ( ph -> ( abs ` ( ( X / ( abs ` X ) ) - 0 ) ) = 1 ) |
| 38 |
25 28 37
|
3eqtr4rd |
|- ( ph -> ( abs ` ( ( X / ( abs ` X ) ) - 0 ) ) = ( abs ` ( 1 - 0 ) ) ) |
| 39 |
5 1 5 8 5 12 14 22 38
|
constrlccl |
|- ( ph -> ( X / ( abs ` X ) ) e. Constr ) |