| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
1
|
a1i |
|- ( T. -> _i e. CC ) |
| 3 |
|
3nn0 |
|- 3 e. NN0 |
| 4 |
3
|
a1i |
|- ( T. -> 3 e. NN0 ) |
| 5 |
4
|
nn0red |
|- ( T. -> 3 e. RR ) |
| 6 |
4
|
nn0ge0d |
|- ( T. -> 0 <_ 3 ) |
| 7 |
5 6
|
resqrtcld |
|- ( T. -> ( sqrt ` 3 ) e. RR ) |
| 8 |
7
|
recnd |
|- ( T. -> ( sqrt ` 3 ) e. CC ) |
| 9 |
2 8
|
absmuld |
|- ( T. -> ( abs ` ( _i x. ( sqrt ` 3 ) ) ) = ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) ) |
| 10 |
|
absi |
|- ( abs ` _i ) = 1 |
| 11 |
7
|
mptru |
|- ( sqrt ` 3 ) e. RR |
| 12 |
|
3re |
|- 3 e. RR |
| 13 |
6
|
mptru |
|- 0 <_ 3 |
| 14 |
|
sqrtge0 |
|- ( ( 3 e. RR /\ 0 <_ 3 ) -> 0 <_ ( sqrt ` 3 ) ) |
| 15 |
12 13 14
|
mp2an |
|- 0 <_ ( sqrt ` 3 ) |
| 16 |
|
absid |
|- ( ( ( sqrt ` 3 ) e. RR /\ 0 <_ ( sqrt ` 3 ) ) -> ( abs ` ( sqrt ` 3 ) ) = ( sqrt ` 3 ) ) |
| 17 |
11 15 16
|
mp2an |
|- ( abs ` ( sqrt ` 3 ) ) = ( sqrt ` 3 ) |
| 18 |
10 17
|
oveq12i |
|- ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) = ( 1 x. ( sqrt ` 3 ) ) |
| 19 |
8
|
mptru |
|- ( sqrt ` 3 ) e. CC |
| 20 |
19
|
mullidi |
|- ( 1 x. ( sqrt ` 3 ) ) = ( sqrt ` 3 ) |
| 21 |
18 20
|
eqtri |
|- ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) = ( sqrt ` 3 ) |
| 22 |
9 21
|
eqtrdi |
|- ( T. -> ( abs ` ( _i x. ( sqrt ` 3 ) ) ) = ( sqrt ` 3 ) ) |
| 23 |
22
|
oveq2d |
|- ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) = ( ( _i x. ( sqrt ` 3 ) ) / ( sqrt ` 3 ) ) ) |
| 24 |
4
|
nn0cnd |
|- ( T. -> 3 e. CC ) |
| 25 |
|
3ne0 |
|- 3 =/= 0 |
| 26 |
|
cnsqrt00 |
|- ( 3 e. CC -> ( ( sqrt ` 3 ) = 0 <-> 3 = 0 ) ) |
| 27 |
26
|
necon3bid |
|- ( 3 e. CC -> ( ( sqrt ` 3 ) =/= 0 <-> 3 =/= 0 ) ) |
| 28 |
27
|
biimpar |
|- ( ( 3 e. CC /\ 3 =/= 0 ) -> ( sqrt ` 3 ) =/= 0 ) |
| 29 |
24 25 28
|
sylancl |
|- ( T. -> ( sqrt ` 3 ) =/= 0 ) |
| 30 |
29
|
mptru |
|- ( sqrt ` 3 ) =/= 0 |
| 31 |
1 19 30
|
divcan4i |
|- ( ( _i x. ( sqrt ` 3 ) ) / ( sqrt ` 3 ) ) = _i |
| 32 |
23 31
|
eqtrdi |
|- ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) = _i ) |
| 33 |
|
1nn0 |
|- 1 e. NN0 |
| 34 |
33
|
a1i |
|- ( T. -> 1 e. NN0 ) |
| 35 |
34
|
nn0constr |
|- ( T. -> 1 e. Constr ) |
| 36 |
4
|
nn0constr |
|- ( T. -> 3 e. Constr ) |
| 37 |
35
|
constrnegcl |
|- ( T. -> -u 1 e. Constr ) |
| 38 |
2 8
|
mulcld |
|- ( T. -> ( _i x. ( sqrt ` 3 ) ) e. CC ) |
| 39 |
|
1nn |
|- 1 e. NN |
| 40 |
|
nnneneg |
|- ( 1 e. NN -> 1 =/= -u 1 ) |
| 41 |
39 40
|
mp1i |
|- ( T. -> 1 =/= -u 1 ) |
| 42 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 43 |
42 38
|
subcld |
|- ( T. -> ( 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC ) |
| 44 |
43
|
abscld |
|- ( T. -> ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) e. RR ) |
| 45 |
|
2re |
|- 2 e. RR |
| 46 |
45
|
a1i |
|- ( T. -> 2 e. RR ) |
| 47 |
43
|
absge0d |
|- ( T. -> 0 <_ ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ) |
| 48 |
|
0le2 |
|- 0 <_ 2 |
| 49 |
48
|
a1i |
|- ( T. -> 0 <_ 2 ) |
| 50 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 51 |
7 50
|
pythagreim |
|- ( T. -> ( ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) ) |
| 52 |
24
|
sqsqrtd |
|- ( T. -> ( ( sqrt ` 3 ) ^ 2 ) = 3 ) |
| 53 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 54 |
53
|
a1i |
|- ( T. -> ( 1 ^ 2 ) = 1 ) |
| 55 |
52 54
|
oveq12d |
|- ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) = ( 3 + 1 ) ) |
| 56 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 57 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 58 |
56 57
|
eqtr4i |
|- ( 3 + 1 ) = ( 2 ^ 2 ) |
| 59 |
55 58
|
eqtrdi |
|- ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) = ( 2 ^ 2 ) ) |
| 60 |
51 59
|
eqtrd |
|- ( T. -> ( ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( 2 ^ 2 ) ) |
| 61 |
44 46 47 49 60
|
sq11d |
|- ( T. -> ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) = 2 ) |
| 62 |
38 42
|
abssubd |
|- ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - 1 ) ) = ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ) |
| 63 |
5 50
|
resubcld |
|- ( T. -> ( 3 - 1 ) e. RR ) |
| 64 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 65 |
49 64
|
breqtrrdi |
|- ( T. -> 0 <_ ( 3 - 1 ) ) |
| 66 |
63 65
|
absidd |
|- ( T. -> ( abs ` ( 3 - 1 ) ) = ( 3 - 1 ) ) |
| 67 |
66 64
|
eqtrdi |
|- ( T. -> ( abs ` ( 3 - 1 ) ) = 2 ) |
| 68 |
61 62 67
|
3eqtr4d |
|- ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - 1 ) ) = ( abs ` ( 3 - 1 ) ) ) |
| 69 |
42
|
negcld |
|- ( T. -> -u 1 e. CC ) |
| 70 |
69 38
|
subcld |
|- ( T. -> ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC ) |
| 71 |
70
|
abscld |
|- ( T. -> ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) e. RR ) |
| 72 |
70
|
absge0d |
|- ( T. -> 0 <_ ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ) |
| 73 |
50
|
renegcld |
|- ( T. -> -u 1 e. RR ) |
| 74 |
7 73
|
pythagreim |
|- ( T. -> ( ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) ) |
| 75 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 76 |
75
|
a1i |
|- ( T. -> ( -u 1 ^ 2 ) = 1 ) |
| 77 |
52 76
|
oveq12d |
|- ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) = ( 3 + 1 ) ) |
| 78 |
77 58
|
eqtrdi |
|- ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) = ( 2 ^ 2 ) ) |
| 79 |
74 78
|
eqtrd |
|- ( T. -> ( ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( 2 ^ 2 ) ) |
| 80 |
71 46 72 49 79
|
sq11d |
|- ( T. -> ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) = 2 ) |
| 81 |
38 69
|
abssubd |
|- ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - -u 1 ) ) = ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ) |
| 82 |
80 81 67
|
3eqtr4d |
|- ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - -u 1 ) ) = ( abs ` ( 3 - 1 ) ) ) |
| 83 |
35 36 35 37 36 35 38 41 68 82
|
constrcccl |
|- ( T. -> ( _i x. ( sqrt ` 3 ) ) e. Constr ) |
| 84 |
|
ine0 |
|- _i =/= 0 |
| 85 |
84
|
a1i |
|- ( T. -> _i =/= 0 ) |
| 86 |
2 8 85 29
|
mulne0d |
|- ( T. -> ( _i x. ( sqrt ` 3 ) ) =/= 0 ) |
| 87 |
83 86
|
constrdircl |
|- ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) e. Constr ) |
| 88 |
32 87
|
eqeltrrd |
|- ( T. -> _i e. Constr ) |
| 89 |
88
|
mptru |
|- _i e. Constr |