Metamath Proof Explorer


Theorem iconstr

Description: The imaginary unit _i is constructible. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Assertion iconstr
|- _i e. Constr

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 1 a1i
 |-  ( T. -> _i e. CC )
3 3nn0
 |-  3 e. NN0
4 3 a1i
 |-  ( T. -> 3 e. NN0 )
5 4 nn0red
 |-  ( T. -> 3 e. RR )
6 4 nn0ge0d
 |-  ( T. -> 0 <_ 3 )
7 5 6 resqrtcld
 |-  ( T. -> ( sqrt ` 3 ) e. RR )
8 7 recnd
 |-  ( T. -> ( sqrt ` 3 ) e. CC )
9 2 8 absmuld
 |-  ( T. -> ( abs ` ( _i x. ( sqrt ` 3 ) ) ) = ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) )
10 absi
 |-  ( abs ` _i ) = 1
11 7 mptru
 |-  ( sqrt ` 3 ) e. RR
12 3re
 |-  3 e. RR
13 6 mptru
 |-  0 <_ 3
14 sqrtge0
 |-  ( ( 3 e. RR /\ 0 <_ 3 ) -> 0 <_ ( sqrt ` 3 ) )
15 12 13 14 mp2an
 |-  0 <_ ( sqrt ` 3 )
16 absid
 |-  ( ( ( sqrt ` 3 ) e. RR /\ 0 <_ ( sqrt ` 3 ) ) -> ( abs ` ( sqrt ` 3 ) ) = ( sqrt ` 3 ) )
17 11 15 16 mp2an
 |-  ( abs ` ( sqrt ` 3 ) ) = ( sqrt ` 3 )
18 10 17 oveq12i
 |-  ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) = ( 1 x. ( sqrt ` 3 ) )
19 8 mptru
 |-  ( sqrt ` 3 ) e. CC
20 19 mullidi
 |-  ( 1 x. ( sqrt ` 3 ) ) = ( sqrt ` 3 )
21 18 20 eqtri
 |-  ( ( abs ` _i ) x. ( abs ` ( sqrt ` 3 ) ) ) = ( sqrt ` 3 )
22 9 21 eqtrdi
 |-  ( T. -> ( abs ` ( _i x. ( sqrt ` 3 ) ) ) = ( sqrt ` 3 ) )
23 22 oveq2d
 |-  ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) = ( ( _i x. ( sqrt ` 3 ) ) / ( sqrt ` 3 ) ) )
24 4 nn0cnd
 |-  ( T. -> 3 e. CC )
25 3ne0
 |-  3 =/= 0
26 cnsqrt00
 |-  ( 3 e. CC -> ( ( sqrt ` 3 ) = 0 <-> 3 = 0 ) )
27 26 necon3bid
 |-  ( 3 e. CC -> ( ( sqrt ` 3 ) =/= 0 <-> 3 =/= 0 ) )
28 27 biimpar
 |-  ( ( 3 e. CC /\ 3 =/= 0 ) -> ( sqrt ` 3 ) =/= 0 )
29 24 25 28 sylancl
 |-  ( T. -> ( sqrt ` 3 ) =/= 0 )
30 29 mptru
 |-  ( sqrt ` 3 ) =/= 0
31 1 19 30 divcan4i
 |-  ( ( _i x. ( sqrt ` 3 ) ) / ( sqrt ` 3 ) ) = _i
32 23 31 eqtrdi
 |-  ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) = _i )
33 1nn0
 |-  1 e. NN0
34 33 a1i
 |-  ( T. -> 1 e. NN0 )
35 34 nn0constr
 |-  ( T. -> 1 e. Constr )
36 4 nn0constr
 |-  ( T. -> 3 e. Constr )
37 35 constrnegcl
 |-  ( T. -> -u 1 e. Constr )
38 2 8 mulcld
 |-  ( T. -> ( _i x. ( sqrt ` 3 ) ) e. CC )
39 1nn
 |-  1 e. NN
40 nnneneg
 |-  ( 1 e. NN -> 1 =/= -u 1 )
41 39 40 mp1i
 |-  ( T. -> 1 =/= -u 1 )
42 1cnd
 |-  ( T. -> 1 e. CC )
43 42 38 subcld
 |-  ( T. -> ( 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC )
44 43 abscld
 |-  ( T. -> ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) e. RR )
45 2re
 |-  2 e. RR
46 45 a1i
 |-  ( T. -> 2 e. RR )
47 43 absge0d
 |-  ( T. -> 0 <_ ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) )
48 0le2
 |-  0 <_ 2
49 48 a1i
 |-  ( T. -> 0 <_ 2 )
50 1red
 |-  ( T. -> 1 e. RR )
51 7 50 pythagreim
 |-  ( T. -> ( ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) )
52 24 sqsqrtd
 |-  ( T. -> ( ( sqrt ` 3 ) ^ 2 ) = 3 )
53 sq1
 |-  ( 1 ^ 2 ) = 1
54 53 a1i
 |-  ( T. -> ( 1 ^ 2 ) = 1 )
55 52 54 oveq12d
 |-  ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) = ( 3 + 1 ) )
56 3p1e4
 |-  ( 3 + 1 ) = 4
57 sq2
 |-  ( 2 ^ 2 ) = 4
58 56 57 eqtr4i
 |-  ( 3 + 1 ) = ( 2 ^ 2 )
59 55 58 eqtrdi
 |-  ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( 1 ^ 2 ) ) = ( 2 ^ 2 ) )
60 51 59 eqtrd
 |-  ( T. -> ( ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( 2 ^ 2 ) )
61 44 46 47 49 60 sq11d
 |-  ( T. -> ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) = 2 )
62 38 42 abssubd
 |-  ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - 1 ) ) = ( abs ` ( 1 - ( _i x. ( sqrt ` 3 ) ) ) ) )
63 5 50 resubcld
 |-  ( T. -> ( 3 - 1 ) e. RR )
64 3m1e2
 |-  ( 3 - 1 ) = 2
65 49 64 breqtrrdi
 |-  ( T. -> 0 <_ ( 3 - 1 ) )
66 63 65 absidd
 |-  ( T. -> ( abs ` ( 3 - 1 ) ) = ( 3 - 1 ) )
67 66 64 eqtrdi
 |-  ( T. -> ( abs ` ( 3 - 1 ) ) = 2 )
68 61 62 67 3eqtr4d
 |-  ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - 1 ) ) = ( abs ` ( 3 - 1 ) ) )
69 42 negcld
 |-  ( T. -> -u 1 e. CC )
70 69 38 subcld
 |-  ( T. -> ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC )
71 70 abscld
 |-  ( T. -> ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) e. RR )
72 70 absge0d
 |-  ( T. -> 0 <_ ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) )
73 50 renegcld
 |-  ( T. -> -u 1 e. RR )
74 7 73 pythagreim
 |-  ( T. -> ( ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) )
75 neg1sqe1
 |-  ( -u 1 ^ 2 ) = 1
76 75 a1i
 |-  ( T. -> ( -u 1 ^ 2 ) = 1 )
77 52 76 oveq12d
 |-  ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) = ( 3 + 1 ) )
78 77 58 eqtrdi
 |-  ( T. -> ( ( ( sqrt ` 3 ) ^ 2 ) + ( -u 1 ^ 2 ) ) = ( 2 ^ 2 ) )
79 74 78 eqtrd
 |-  ( T. -> ( ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) ^ 2 ) = ( 2 ^ 2 ) )
80 71 46 72 49 79 sq11d
 |-  ( T. -> ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) = 2 )
81 38 69 abssubd
 |-  ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - -u 1 ) ) = ( abs ` ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) ) )
82 80 81 67 3eqtr4d
 |-  ( T. -> ( abs ` ( ( _i x. ( sqrt ` 3 ) ) - -u 1 ) ) = ( abs ` ( 3 - 1 ) ) )
83 35 36 35 37 36 35 38 41 68 82 constrcccl
 |-  ( T. -> ( _i x. ( sqrt ` 3 ) ) e. Constr )
84 ine0
 |-  _i =/= 0
85 84 a1i
 |-  ( T. -> _i =/= 0 )
86 2 8 85 29 mulne0d
 |-  ( T. -> ( _i x. ( sqrt ` 3 ) ) =/= 0 )
87 83 86 constrdircl
 |-  ( T. -> ( ( _i x. ( sqrt ` 3 ) ) / ( abs ` ( _i x. ( sqrt ` 3 ) ) ) ) e. Constr )
88 32 87 eqeltrrd
 |-  ( T. -> _i e. Constr )
89 88 mptru
 |-  _i e. Constr