| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) ) |
| 2 |
|
sqrtth |
|- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 3 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 4 |
3
|
a1i |
|- ( A e. CC -> ( 0 ^ 2 ) = 0 ) |
| 5 |
2 4
|
eqeq12d |
|- ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) <-> A = 0 ) ) |
| 6 |
1 5
|
imbitrid |
|- ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
| 7 |
|
fveq2 |
|- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
| 8 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
| 9 |
7 8
|
eqtrdi |
|- ( A = 0 -> ( sqrt ` A ) = 0 ) |
| 10 |
6 9
|
impbid1 |
|- ( A e. CC -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |