| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrremulcl.1 |
|
| 2 |
|
constrremulcl.2 |
|
| 3 |
|
constrremulcl.3 |
|
| 4 |
|
constrremulcl.4 |
|
| 5 |
|
simpr |
|
| 6 |
5
|
oveq1d |
|
| 7 |
4
|
recnd |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
mul02d |
|
| 10 |
6 9
|
eqtrd |
|
| 11 |
|
0nn0 |
|
| 12 |
11
|
a1i |
|
| 13 |
12
|
nn0constr |
|
| 14 |
13
|
adantr |
|
| 15 |
10 14
|
eqeltrd |
|
| 16 |
13
|
adantr |
|
| 17 |
1
|
adantr |
|
| 18 |
|
iconstr |
|
| 19 |
18
|
a1i |
|
| 20 |
19
|
constrcn |
|
| 21 |
20 7
|
mulcld |
|
| 22 |
20
|
subid1d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
22 20
|
eqeltrd |
|
| 25 |
7 24
|
mulcld |
|
| 26 |
25
|
addlidd |
|
| 27 |
20 7
|
mulcomd |
|
| 28 |
23 26 27
|
3eqtr4rd |
|
| 29 |
20 7
|
absmuld |
|
| 30 |
|
absi |
|
| 31 |
30
|
a1i |
|
| 32 |
31
|
oveq1d |
|
| 33 |
7
|
abscld |
|
| 34 |
33
|
recnd |
|
| 35 |
34
|
mullidd |
|
| 36 |
29 32 35
|
3eqtrd |
|
| 37 |
21
|
subid1d |
|
| 38 |
37
|
fveq2d |
|
| 39 |
7
|
subid1d |
|
| 40 |
39
|
fveq2d |
|
| 41 |
36 38 40
|
3eqtr4d |
|
| 42 |
13 19 13 2 13 4 21 28 41
|
constrlccl |
|
| 43 |
42
|
adantr |
|
| 44 |
3
|
recnd |
|
| 45 |
44 20
|
negsubd |
|
| 46 |
19
|
constrnegcl |
|
| 47 |
1 46
|
constraddcl |
|
| 48 |
45 47
|
eqeltrrd |
|
| 49 |
48 42
|
constraddcl |
|
| 50 |
49
|
adantr |
|
| 51 |
4
|
adantr |
|
| 52 |
44 7
|
mulcld |
|
| 53 |
52
|
adantr |
|
| 54 |
44
|
subid1d |
|
| 55 |
54
|
oveq2d |
|
| 56 |
54 44
|
eqeltrd |
|
| 57 |
7 56
|
mulcld |
|
| 58 |
57
|
addlidd |
|
| 59 |
44 7
|
mulcomd |
|
| 60 |
55 58 59
|
3eqtr4rd |
|
| 61 |
60
|
adantr |
|
| 62 |
44 20
|
subcld |
|
| 63 |
62 21
|
pncand |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
oveq2d |
|
| 66 |
7 44 20
|
subdid |
|
| 67 |
59 27
|
oveq12d |
|
| 68 |
66 67
|
eqtr4d |
|
| 69 |
68
|
oveq2d |
|
| 70 |
21 52
|
pncan3d |
|
| 71 |
65 69 70
|
3eqtrrd |
|
| 72 |
71
|
adantr |
|
| 73 |
54
|
fveq2d |
|
| 74 |
3
|
cjred |
|
| 75 |
73 74
|
eqtrd |
|
| 76 |
63 45
|
eqtr4d |
|
| 77 |
75 76
|
oveq12d |
|
| 78 |
20
|
negcld |
|
| 79 |
44 44 78
|
adddid |
|
| 80 |
44 78
|
mulcomd |
|
| 81 |
|
mulneg12 |
|
| 82 |
20 44 81
|
syl2anc |
|
| 83 |
80 82
|
eqtrd |
|
| 84 |
83
|
oveq2d |
|
| 85 |
77 79 84
|
3eqtrd |
|
| 86 |
85
|
fveq2d |
|
| 87 |
3 3
|
remulcld |
|
| 88 |
3
|
renegcld |
|
| 89 |
87 88
|
crimd |
|
| 90 |
86 89
|
eqtrd |
|
| 91 |
90
|
adantr |
|
| 92 |
44
|
adantr |
|
| 93 |
|
simpr |
|
| 94 |
92 93
|
negne0d |
|
| 95 |
91 94
|
eqnetrd |
|
| 96 |
16 17 43 50 51 51 53 61 72 95
|
constrllcl |
|
| 97 |
15 96
|
pm2.61dane |
|