Metamath Proof Explorer


Theorem constrfld

Description: The constructible numbers form a field. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Assertion constrfld ( ℂflds Constr ) ∈ Field

Proof

Step Hyp Ref Expression
1 cnfldfld fld ∈ Field
2 constrsdrg Constr ∈ ( SubDRing ‘ ℂfld )
3 fldsdrgfld ( ( ℂfld ∈ Field ∧ Constr ∈ ( SubDRing ‘ ℂfld ) ) → ( ℂflds Constr ) ∈ Field )
4 1 2 3 mp2an ( ℂflds Constr ) ∈ Field