| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrresqrtcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constrresqrtcl.2 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
constrresqrtcl.3 |
⊢ ( 𝜑 → 0 ≤ 𝑋 ) |
| 4 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 5 |
4
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 6 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 7 |
6
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 8 |
|
iconstr |
⊢ i ∈ Constr |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → i ∈ Constr ) |
| 10 |
2
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 11 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 12 |
10 11
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 1 ) ∈ ℂ ) |
| 13 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 14 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 16 |
12 13 15
|
divrecd |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) / 2 ) = ( ( 𝑋 − 1 ) · ( 1 / 2 ) ) ) |
| 17 |
10 11
|
negsubd |
⊢ ( 𝜑 → ( 𝑋 + - 1 ) = ( 𝑋 − 1 ) ) |
| 18 |
7
|
constrnegcl |
⊢ ( 𝜑 → - 1 ∈ Constr ) |
| 19 |
1 18
|
constraddcl |
⊢ ( 𝜑 → ( 𝑋 + - 1 ) ∈ Constr ) |
| 20 |
17 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 − 1 ) ∈ Constr ) |
| 21 |
|
2z |
⊢ 2 ∈ ℤ |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 23 |
22
|
zconstr |
⊢ ( 𝜑 → 2 ∈ Constr ) |
| 24 |
23 15
|
constrinvcl |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ Constr ) |
| 25 |
20 24
|
constrmulcl |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) · ( 1 / 2 ) ) ∈ Constr ) |
| 26 |
16 25
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) / 2 ) ∈ Constr ) |
| 27 |
9 26
|
constrmulcl |
⊢ ( 𝜑 → ( i · ( ( 𝑋 − 1 ) / 2 ) ) ∈ Constr ) |
| 28 |
10 11
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ ℂ ) |
| 29 |
28 13 15
|
divrecd |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) / 2 ) = ( ( 𝑋 + 1 ) · ( 1 / 2 ) ) ) |
| 30 |
1 7
|
constraddcl |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ Constr ) |
| 31 |
30 24
|
constrmulcl |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) · ( 1 / 2 ) ) ∈ Constr ) |
| 32 |
29 31
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) / 2 ) ∈ Constr ) |
| 33 |
2 3
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑋 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( 𝜑 → ( √ ‘ 𝑋 ) ∈ ℂ ) |
| 35 |
11
|
subid1d |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 36 |
35 11
|
eqeltrd |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 37 |
34 36
|
mulcld |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 38 |
37
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( √ ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( √ ‘ 𝑋 ) · ( 1 − 0 ) ) ) |
| 39 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( √ ‘ 𝑋 ) · 1 ) ) |
| 40 |
34
|
mulridd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) · 1 ) = ( √ ‘ 𝑋 ) ) |
| 41 |
38 39 40
|
3eqtrrd |
⊢ ( 𝜑 → ( √ ‘ 𝑋 ) = ( 0 + ( ( √ ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 42 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 43 |
2 42
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ ℝ ) |
| 44 |
43
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) / 2 ) ∈ ℝ ) |
| 45 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 47 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 48 |
2
|
lep1d |
⊢ ( 𝜑 → 𝑋 ≤ ( 𝑋 + 1 ) ) |
| 49 |
47 2 43 3 48
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 + 1 ) ) |
| 50 |
43 46 49
|
divge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 + 1 ) / 2 ) ) |
| 51 |
44 50
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 + 1 ) / 2 ) ) = ( ( 𝑋 + 1 ) / 2 ) ) |
| 52 |
28
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) / 2 ) ∈ ℂ ) |
| 53 |
52
|
subid1d |
⊢ ( 𝜑 → ( ( ( 𝑋 + 1 ) / 2 ) − 0 ) = ( ( 𝑋 + 1 ) / 2 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝑋 + 1 ) / 2 ) − 0 ) ) = ( abs ‘ ( ( 𝑋 + 1 ) / 2 ) ) ) |
| 55 |
|
ax-icn |
⊢ i ∈ ℂ |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 57 |
2 42
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − 1 ) ∈ ℝ ) |
| 58 |
57
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) / 2 ) ∈ ℝ ) |
| 59 |
58
|
recnd |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) / 2 ) ∈ ℂ ) |
| 60 |
56 59
|
mulneg2d |
⊢ ( 𝜑 → ( i · - ( ( 𝑋 − 1 ) / 2 ) ) = - ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) + ( i · - ( ( 𝑋 − 1 ) / 2 ) ) ) = ( ( √ ‘ 𝑋 ) + - ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) ) |
| 62 |
27
|
constrcn |
⊢ ( 𝜑 → ( i · ( ( 𝑋 − 1 ) / 2 ) ) ∈ ℂ ) |
| 63 |
34 62
|
negsubd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) + - ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) = ( ( √ ‘ 𝑋 ) − ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) ) |
| 64 |
61 63
|
eqtr2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) − ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) = ( ( √ ‘ 𝑋 ) + ( i · - ( ( 𝑋 − 1 ) / 2 ) ) ) ) |
| 65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( √ ‘ 𝑋 ) − ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) ) = ( abs ‘ ( ( √ ‘ 𝑋 ) + ( i · - ( ( 𝑋 − 1 ) / 2 ) ) ) ) ) |
| 66 |
58
|
renegcld |
⊢ ( 𝜑 → - ( ( 𝑋 − 1 ) / 2 ) ∈ ℝ ) |
| 67 |
|
absreim |
⊢ ( ( ( √ ‘ 𝑋 ) ∈ ℝ ∧ - ( ( 𝑋 − 1 ) / 2 ) ∈ ℝ ) → ( abs ‘ ( ( √ ‘ 𝑋 ) + ( i · - ( ( 𝑋 − 1 ) / 2 ) ) ) ) = ( √ ‘ ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) ) ) |
| 68 |
33 66 67
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( √ ‘ 𝑋 ) + ( i · - ( ( 𝑋 − 1 ) / 2 ) ) ) ) = ( √ ‘ ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) ) ) |
| 69 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) = 4 ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝜑 → ( ( 4 · 𝑋 ) / ( 2 ↑ 2 ) ) = ( ( 4 · 𝑋 ) / 4 ) ) |
| 72 |
|
4cn |
⊢ 4 ∈ ℂ |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 74 |
13 15 22
|
expne0d |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ≠ 0 ) |
| 75 |
69 74
|
eqnetrrid |
⊢ ( 𝜑 → 4 ≠ 0 ) |
| 76 |
10 73 75
|
divcan3d |
⊢ ( 𝜑 → ( ( 4 · 𝑋 ) / 4 ) = 𝑋 ) |
| 77 |
71 76
|
eqtr2d |
⊢ ( 𝜑 → 𝑋 = ( ( 4 · 𝑋 ) / ( 2 ↑ 2 ) ) ) |
| 78 |
12 13 15
|
sqdivd |
⊢ ( 𝜑 → ( ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) = ( ( ( 𝑋 − 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 79 |
77 78
|
oveq12d |
⊢ ( 𝜑 → ( 𝑋 + ( ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) = ( ( ( 4 · 𝑋 ) / ( 2 ↑ 2 ) ) + ( ( ( 𝑋 − 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) ) |
| 80 |
10
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) |
| 81 |
59
|
sqnegd |
⊢ ( 𝜑 → ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) = ( ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) |
| 82 |
80 81
|
oveq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) = ( 𝑋 + ( ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) ) |
| 83 |
28 13 15
|
sqdivd |
⊢ ( 𝜑 → ( ( ( 𝑋 + 1 ) / 2 ) ↑ 2 ) = ( ( ( 𝑋 + 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 84 |
28
|
sqcld |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) ↑ 2 ) ∈ ℂ ) |
| 85 |
12
|
sqcld |
⊢ ( 𝜑 → ( ( 𝑋 − 1 ) ↑ 2 ) ∈ ℂ ) |
| 86 |
73 10
|
mulcld |
⊢ ( 𝜑 → ( 4 · 𝑋 ) ∈ ℂ ) |
| 87 |
10 11
|
binom2subadd |
⊢ ( 𝜑 → ( ( ( 𝑋 + 1 ) ↑ 2 ) − ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( 4 · ( 𝑋 · 1 ) ) ) |
| 88 |
10
|
mulridd |
⊢ ( 𝜑 → ( 𝑋 · 1 ) = 𝑋 ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 4 · ( 𝑋 · 1 ) ) = ( 4 · 𝑋 ) ) |
| 90 |
87 89
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑋 + 1 ) ↑ 2 ) − ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( 4 · 𝑋 ) ) |
| 91 |
|
subadd2 |
⊢ ( ( ( ( 𝑋 + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑋 − 1 ) ↑ 2 ) ∈ ℂ ∧ ( 4 · 𝑋 ) ∈ ℂ ) → ( ( ( ( 𝑋 + 1 ) ↑ 2 ) − ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( 4 · 𝑋 ) ↔ ( ( 4 · 𝑋 ) + ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( ( 𝑋 + 1 ) ↑ 2 ) ) ) |
| 92 |
91
|
biimpa |
⊢ ( ( ( ( ( 𝑋 + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑋 − 1 ) ↑ 2 ) ∈ ℂ ∧ ( 4 · 𝑋 ) ∈ ℂ ) ∧ ( ( ( 𝑋 + 1 ) ↑ 2 ) − ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( 4 · 𝑋 ) ) → ( ( 4 · 𝑋 ) + ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( ( 𝑋 + 1 ) ↑ 2 ) ) |
| 93 |
84 85 86 90 92
|
syl31anc |
⊢ ( 𝜑 → ( ( 4 · 𝑋 ) + ( ( 𝑋 − 1 ) ↑ 2 ) ) = ( ( 𝑋 + 1 ) ↑ 2 ) ) |
| 94 |
93
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 4 · 𝑋 ) + ( ( 𝑋 − 1 ) ↑ 2 ) ) / ( 2 ↑ 2 ) ) = ( ( ( 𝑋 + 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 95 |
13
|
sqcld |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ∈ ℂ ) |
| 96 |
86 85 95 74
|
divdird |
⊢ ( 𝜑 → ( ( ( 4 · 𝑋 ) + ( ( 𝑋 − 1 ) ↑ 2 ) ) / ( 2 ↑ 2 ) ) = ( ( ( 4 · 𝑋 ) / ( 2 ↑ 2 ) ) + ( ( ( 𝑋 − 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) ) |
| 97 |
83 94 96
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑋 + 1 ) / 2 ) ↑ 2 ) = ( ( ( 4 · 𝑋 ) / ( 2 ↑ 2 ) ) + ( ( ( 𝑋 − 1 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) ) |
| 98 |
79 82 97
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) = ( ( ( 𝑋 + 1 ) / 2 ) ↑ 2 ) ) |
| 99 |
98
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( 𝑋 + 1 ) / 2 ) ↑ 2 ) ) ) |
| 100 |
44 50
|
sqrtsqd |
⊢ ( 𝜑 → ( √ ‘ ( ( ( 𝑋 + 1 ) / 2 ) ↑ 2 ) ) = ( ( 𝑋 + 1 ) / 2 ) ) |
| 101 |
99 100
|
eqtrd |
⊢ ( 𝜑 → ( √ ‘ ( ( ( √ ‘ 𝑋 ) ↑ 2 ) + ( - ( ( 𝑋 − 1 ) / 2 ) ↑ 2 ) ) ) = ( ( 𝑋 + 1 ) / 2 ) ) |
| 102 |
65 68 101
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( √ ‘ 𝑋 ) − ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) ) = ( ( 𝑋 + 1 ) / 2 ) ) |
| 103 |
51 54 102
|
3eqtr4rd |
⊢ ( 𝜑 → ( abs ‘ ( ( √ ‘ 𝑋 ) − ( i · ( ( 𝑋 − 1 ) / 2 ) ) ) ) = ( abs ‘ ( ( ( 𝑋 + 1 ) / 2 ) − 0 ) ) ) |
| 104 |
5 7 27 32 5 33 34 41 103
|
constrlccl |
⊢ ( 𝜑 → ( √ ‘ 𝑋 ) ∈ Constr ) |