Metamath Proof Explorer


Theorem constrresqrtcl

Description: If a positive real number X is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses constrresqrtcl.1 φ X Constr
constrresqrtcl.2 φ X
constrresqrtcl.3 φ 0 X
Assertion constrresqrtcl φ X Constr

Proof

Step Hyp Ref Expression
1 constrresqrtcl.1 φ X Constr
2 constrresqrtcl.2 φ X
3 constrresqrtcl.3 φ 0 X
4 0zd φ 0
5 4 zconstr φ 0 Constr
6 1zzd φ 1
7 6 zconstr φ 1 Constr
8 iconstr i Constr
9 8 a1i φ i Constr
10 2 recnd φ X
11 1cnd φ 1
12 10 11 subcld φ X 1
13 2cnd φ 2
14 2ne0 2 0
15 14 a1i φ 2 0
16 12 13 15 divrecd φ X 1 2 = X 1 1 2
17 10 11 negsubd φ X + -1 = X 1
18 7 constrnegcl φ 1 Constr
19 1 18 constraddcl φ X + -1 Constr
20 17 19 eqeltrrd φ X 1 Constr
21 2z 2
22 21 a1i φ 2
23 22 zconstr φ 2 Constr
24 23 15 constrinvcl φ 1 2 Constr
25 20 24 constrmulcl φ X 1 1 2 Constr
26 16 25 eqeltrd φ X 1 2 Constr
27 9 26 constrmulcl φ i X 1 2 Constr
28 10 11 addcld φ X + 1
29 28 13 15 divrecd φ X + 1 2 = X + 1 1 2
30 1 7 constraddcl φ X + 1 Constr
31 30 24 constrmulcl φ X + 1 1 2 Constr
32 29 31 eqeltrd φ X + 1 2 Constr
33 2 3 resqrtcld φ X
34 33 recnd φ X
35 11 subid1d φ 1 0 = 1
36 35 11 eqeltrd φ 1 0
37 34 36 mulcld φ X 1 0
38 37 addlidd φ 0 + X 1 0 = X 1 0
39 35 oveq2d φ X 1 0 = X 1
40 34 mulridd φ X 1 = X
41 38 39 40 3eqtrrd φ X = 0 + X 1 0
42 1red φ 1
43 2 42 readdcld φ X + 1
44 43 rehalfcld φ X + 1 2
45 2rp 2 +
46 45 a1i φ 2 +
47 0red φ 0
48 2 lep1d φ X X + 1
49 47 2 43 3 48 letrd φ 0 X + 1
50 43 46 49 divge0d φ 0 X + 1 2
51 44 50 absidd φ X + 1 2 = X + 1 2
52 28 halfcld φ X + 1 2
53 52 subid1d φ X + 1 2 0 = X + 1 2
54 53 fveq2d φ X + 1 2 0 = X + 1 2
55 ax-icn i
56 55 a1i φ i
57 2 42 resubcld φ X 1
58 57 rehalfcld φ X 1 2
59 58 recnd φ X 1 2
60 56 59 mulneg2d φ i X 1 2 = i X 1 2
61 60 oveq2d φ X + i X 1 2 = X + i X 1 2
62 27 constrcn φ i X 1 2
63 34 62 negsubd φ X + i X 1 2 = X i X 1 2
64 61 63 eqtr2d φ X i X 1 2 = X + i X 1 2
65 64 fveq2d φ X i X 1 2 = X + i X 1 2
66 58 renegcld φ X 1 2
67 absreim X X 1 2 X + i X 1 2 = X 2 + X 1 2 2
68 33 66 67 syl2anc φ X + i X 1 2 = X 2 + X 1 2 2
69 sq2 2 2 = 4
70 69 a1i φ 2 2 = 4
71 70 oveq2d φ 4 X 2 2 = 4 X 4
72 4cn 4
73 72 a1i φ 4
74 13 15 22 expne0d φ 2 2 0
75 69 74 eqnetrrid φ 4 0
76 10 73 75 divcan3d φ 4 X 4 = X
77 71 76 eqtr2d φ X = 4 X 2 2
78 12 13 15 sqdivd φ X 1 2 2 = X 1 2 2 2
79 77 78 oveq12d φ X + X 1 2 2 = 4 X 2 2 + X 1 2 2 2
80 10 sqsqrtd φ X 2 = X
81 59 sqnegd φ X 1 2 2 = X 1 2 2
82 80 81 oveq12d φ X 2 + X 1 2 2 = X + X 1 2 2
83 28 13 15 sqdivd φ X + 1 2 2 = X + 1 2 2 2
84 28 sqcld φ X + 1 2
85 12 sqcld φ X 1 2
86 73 10 mulcld φ 4 X
87 10 11 binom2subadd φ X + 1 2 X 1 2 = 4 X 1
88 10 mulridd φ X 1 = X
89 88 oveq2d φ 4 X 1 = 4 X
90 87 89 eqtrd φ X + 1 2 X 1 2 = 4 X
91 subadd2 X + 1 2 X 1 2 4 X X + 1 2 X 1 2 = 4 X 4 X + X 1 2 = X + 1 2
92 91 biimpa X + 1 2 X 1 2 4 X X + 1 2 X 1 2 = 4 X 4 X + X 1 2 = X + 1 2
93 84 85 86 90 92 syl31anc φ 4 X + X 1 2 = X + 1 2
94 93 oveq1d φ 4 X + X 1 2 2 2 = X + 1 2 2 2
95 13 sqcld φ 2 2
96 86 85 95 74 divdird φ 4 X + X 1 2 2 2 = 4 X 2 2 + X 1 2 2 2
97 83 94 96 3eqtr2d φ X + 1 2 2 = 4 X 2 2 + X 1 2 2 2
98 79 82 97 3eqtr4d φ X 2 + X 1 2 2 = X + 1 2 2
99 98 fveq2d φ X 2 + X 1 2 2 = X + 1 2 2
100 44 50 sqrtsqd φ X + 1 2 2 = X + 1 2
101 99 100 eqtrd φ X 2 + X 1 2 2 = X + 1 2
102 65 68 101 3eqtrd φ X i X 1 2 = X + 1 2
103 51 54 102 3eqtr4rd φ X i X 1 2 = X + 1 2 0
104 5 7 27 32 5 33 34 41 103 constrlccl φ X Constr