Metamath Proof Explorer


Theorem constrabscl

Description: Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025)

Ref Expression
Hypothesis constrabscl.1 φ X Constr
Assertion constrabscl φ X Constr

Proof

Step Hyp Ref Expression
1 constrabscl.1 φ X Constr
2 0zd φ 0
3 2 zconstr φ 0 Constr
4 1zzd φ 1
5 4 zconstr φ 1 Constr
6 1 constrcn φ X
7 6 abscld φ X
8 7 recnd φ X
9 1m0e1 1 0 = 1
10 9 a1i φ 1 0 = 1
11 ax-1cn 1
12 10 11 eqeltrdi φ 1 0
13 8 12 mulcld φ X 1 0
14 13 addlidd φ 0 + X 1 0 = X 1 0
15 10 oveq2d φ X 1 0 = X 1
16 8 mulridd φ X 1 = X
17 14 15 16 3eqtrrd φ X = 0 + X 1 0
18 6 absge0d φ 0 X
19 7 18 absidd φ X = X
20 8 subid1d φ X 0 = X
21 20 fveq2d φ X 0 = X
22 6 subid1d φ X 0 = X
23 22 fveq2d φ X 0 = X
24 19 21 23 3eqtr4d φ X 0 = X 0
25 3 5 3 1 3 7 8 17 24 constrlccl φ X Constr