| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrabscl.1 |
|- ( ph -> X e. Constr ) |
| 2 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 3 |
2
|
zconstr |
|- ( ph -> 0 e. Constr ) |
| 4 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 5 |
4
|
zconstr |
|- ( ph -> 1 e. Constr ) |
| 6 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 7 |
6
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ph -> ( abs ` X ) e. CC ) |
| 9 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 10 |
9
|
a1i |
|- ( ph -> ( 1 - 0 ) = 1 ) |
| 11 |
|
ax-1cn |
|- 1 e. CC |
| 12 |
10 11
|
eqeltrdi |
|- ( ph -> ( 1 - 0 ) e. CC ) |
| 13 |
8 12
|
mulcld |
|- ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) e. CC ) |
| 14 |
13
|
addlidd |
|- ( ph -> ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) = ( ( abs ` X ) x. ( 1 - 0 ) ) ) |
| 15 |
10
|
oveq2d |
|- ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) = ( ( abs ` X ) x. 1 ) ) |
| 16 |
8
|
mulridd |
|- ( ph -> ( ( abs ` X ) x. 1 ) = ( abs ` X ) ) |
| 17 |
14 15 16
|
3eqtrrd |
|- ( ph -> ( abs ` X ) = ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) ) |
| 18 |
6
|
absge0d |
|- ( ph -> 0 <_ ( abs ` X ) ) |
| 19 |
7 18
|
absidd |
|- ( ph -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 20 |
8
|
subid1d |
|- ( ph -> ( ( abs ` X ) - 0 ) = ( abs ` X ) ) |
| 21 |
20
|
fveq2d |
|- ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( abs ` X ) ) ) |
| 22 |
6
|
subid1d |
|- ( ph -> ( X - 0 ) = X ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 24 |
19 21 23
|
3eqtr4d |
|- ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( X - 0 ) ) ) |
| 25 |
3 5 3 1 3 7 8 17 24
|
constrlccl |
|- ( ph -> ( abs ` X ) e. Constr ) |