Metamath Proof Explorer


Theorem constrabscl

Description: Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025)

Ref Expression
Hypothesis constrabscl.1
|- ( ph -> X e. Constr )
Assertion constrabscl
|- ( ph -> ( abs ` X ) e. Constr )

Proof

Step Hyp Ref Expression
1 constrabscl.1
 |-  ( ph -> X e. Constr )
2 0zd
 |-  ( ph -> 0 e. ZZ )
3 2 zconstr
 |-  ( ph -> 0 e. Constr )
4 1zzd
 |-  ( ph -> 1 e. ZZ )
5 4 zconstr
 |-  ( ph -> 1 e. Constr )
6 1 constrcn
 |-  ( ph -> X e. CC )
7 6 abscld
 |-  ( ph -> ( abs ` X ) e. RR )
8 7 recnd
 |-  ( ph -> ( abs ` X ) e. CC )
9 1m0e1
 |-  ( 1 - 0 ) = 1
10 9 a1i
 |-  ( ph -> ( 1 - 0 ) = 1 )
11 ax-1cn
 |-  1 e. CC
12 10 11 eqeltrdi
 |-  ( ph -> ( 1 - 0 ) e. CC )
13 8 12 mulcld
 |-  ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) e. CC )
14 13 addlidd
 |-  ( ph -> ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) = ( ( abs ` X ) x. ( 1 - 0 ) ) )
15 10 oveq2d
 |-  ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) = ( ( abs ` X ) x. 1 ) )
16 8 mulridd
 |-  ( ph -> ( ( abs ` X ) x. 1 ) = ( abs ` X ) )
17 14 15 16 3eqtrrd
 |-  ( ph -> ( abs ` X ) = ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) )
18 6 absge0d
 |-  ( ph -> 0 <_ ( abs ` X ) )
19 7 18 absidd
 |-  ( ph -> ( abs ` ( abs ` X ) ) = ( abs ` X ) )
20 8 subid1d
 |-  ( ph -> ( ( abs ` X ) - 0 ) = ( abs ` X ) )
21 20 fveq2d
 |-  ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( abs ` X ) ) )
22 6 subid1d
 |-  ( ph -> ( X - 0 ) = X )
23 22 fveq2d
 |-  ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) )
24 19 21 23 3eqtr4d
 |-  ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( X - 0 ) ) )
25 3 5 3 1 3 7 8 17 24 constrlccl
 |-  ( ph -> ( abs ` X ) e. Constr )