| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrabscl.1 |
|- ( ph -> X e. Constr ) |
| 2 |
|
fveq2 |
|- ( X = 0 -> ( sqrt ` X ) = ( sqrt ` 0 ) ) |
| 3 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
| 4 |
2 3
|
eqtrdi |
|- ( X = 0 -> ( sqrt ` X ) = 0 ) |
| 5 |
|
0zd |
|- ( X = 0 -> 0 e. ZZ ) |
| 6 |
5
|
zconstr |
|- ( X = 0 -> 0 e. Constr ) |
| 7 |
4 6
|
eqeltrd |
|- ( X = 0 -> ( sqrt ` X ) e. Constr ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ X = 0 ) -> ( sqrt ` X ) e. Constr ) |
| 9 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ -u X e. RR+ ) -> X e. CC ) |
| 11 |
10
|
negnegd |
|- ( ( ph /\ -u X e. RR+ ) -> -u -u X = X ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ -u X e. RR+ ) -> ( sqrt ` -u -u X ) = ( sqrt ` X ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ -u X e. RR+ ) -> -u X e. RR+ ) |
| 14 |
13
|
rpred |
|- ( ( ph /\ -u X e. RR+ ) -> -u X e. RR ) |
| 15 |
13
|
rpge0d |
|- ( ( ph /\ -u X e. RR+ ) -> 0 <_ -u X ) |
| 16 |
14 15
|
sqrtnegd |
|- ( ( ph /\ -u X e. RR+ ) -> ( sqrt ` -u -u X ) = ( _i x. ( sqrt ` -u X ) ) ) |
| 17 |
12 16
|
eqtr3d |
|- ( ( ph /\ -u X e. RR+ ) -> ( sqrt ` X ) = ( _i x. ( sqrt ` -u X ) ) ) |
| 18 |
|
iconstr |
|- _i e. Constr |
| 19 |
18
|
a1i |
|- ( ( ph /\ -u X e. RR+ ) -> _i e. Constr ) |
| 20 |
1
|
adantr |
|- ( ( ph /\ -u X e. RR+ ) -> X e. Constr ) |
| 21 |
20
|
constrnegcl |
|- ( ( ph /\ -u X e. RR+ ) -> -u X e. Constr ) |
| 22 |
21 14 15
|
constrresqrtcl |
|- ( ( ph /\ -u X e. RR+ ) -> ( sqrt ` -u X ) e. Constr ) |
| 23 |
19 22
|
constrmulcl |
|- ( ( ph /\ -u X e. RR+ ) -> ( _i x. ( sqrt ` -u X ) ) e. Constr ) |
| 24 |
17 23
|
eqeltrd |
|- ( ( ph /\ -u X e. RR+ ) -> ( sqrt ` X ) e. Constr ) |
| 25 |
24
|
adantlr |
|- ( ( ( ph /\ X =/= 0 ) /\ -u X e. RR+ ) -> ( sqrt ` X ) e. Constr ) |
| 26 |
9
|
ad2antrr |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> X e. CC ) |
| 27 |
26
|
abscld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` X ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` X ) e. CC ) |
| 29 |
28
|
sqrtcld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( sqrt ` ( abs ` X ) ) e. CC ) |
| 30 |
28 26
|
addcld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( abs ` X ) + X ) e. CC ) |
| 31 |
30
|
abscld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` ( ( abs ` X ) + X ) ) e. RR ) |
| 32 |
31
|
recnd |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` ( ( abs ` X ) + X ) ) e. CC ) |
| 33 |
9
|
ad2antrr |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> X e. CC ) |
| 34 |
9
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( abs ` X ) e. RR ) |
| 36 |
35
|
recnd |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( abs ` X ) e. CC ) |
| 37 |
|
simpr |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( ( abs ` X ) + X ) = 0 ) |
| 38 |
|
addeq0 |
|- ( ( ( abs ` X ) e. CC /\ X e. CC ) -> ( ( ( abs ` X ) + X ) = 0 <-> ( abs ` X ) = -u X ) ) |
| 39 |
38
|
biimpa |
|- ( ( ( ( abs ` X ) e. CC /\ X e. CC ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( abs ` X ) = -u X ) |
| 40 |
36 33 37 39
|
syl21anc |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( abs ` X ) = -u X ) |
| 41 |
40 35
|
eqeltrrd |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> -u X e. RR ) |
| 42 |
33 41
|
negrebd |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> X e. RR ) |
| 43 |
|
0red |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> 0 e. RR ) |
| 44 |
|
simplr |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> -. -u X e. RR+ ) |
| 45 |
|
negelrp |
|- ( X e. RR -> ( -u X e. RR+ <-> X < 0 ) ) |
| 46 |
45
|
notbid |
|- ( X e. RR -> ( -. -u X e. RR+ <-> -. X < 0 ) ) |
| 47 |
46
|
biimpa |
|- ( ( X e. RR /\ -. -u X e. RR+ ) -> -. X < 0 ) |
| 48 |
42 44 47
|
syl2anc |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> -. X < 0 ) |
| 49 |
43 42 48
|
nltled |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> 0 <_ X ) |
| 50 |
42 49
|
absidd |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> ( abs ` X ) = X ) |
| 51 |
50 40
|
eqtr3d |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> X = -u X ) |
| 52 |
33 51
|
eqnegad |
|- ( ( ( ph /\ -. -u X e. RR+ ) /\ ( ( abs ` X ) + X ) = 0 ) -> X = 0 ) |
| 53 |
52
|
ex |
|- ( ( ph /\ -. -u X e. RR+ ) -> ( ( ( abs ` X ) + X ) = 0 -> X = 0 ) ) |
| 54 |
53
|
necon3d |
|- ( ( ph /\ -. -u X e. RR+ ) -> ( X =/= 0 -> ( ( abs ` X ) + X ) =/= 0 ) ) |
| 55 |
54
|
impancom |
|- ( ( ph /\ X =/= 0 ) -> ( -. -u X e. RR+ -> ( ( abs ` X ) + X ) =/= 0 ) ) |
| 56 |
55
|
imp |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( abs ` X ) + X ) =/= 0 ) |
| 57 |
30 56
|
absne0d |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` ( ( abs ` X ) + X ) ) =/= 0 ) |
| 58 |
30 32 57
|
divcld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) e. CC ) |
| 59 |
29 58
|
mulcld |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) e. CC ) |
| 60 |
|
eqid |
|- ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) = ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) |
| 61 |
60
|
sqreulem |
|- ( ( X e. CC /\ ( ( abs ` X ) + X ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ^ 2 ) = X /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e/ RR+ ) ) |
| 62 |
26 56 61
|
syl2anc |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ^ 2 ) = X /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e/ RR+ ) ) |
| 63 |
62
|
simp1d |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ^ 2 ) = X ) |
| 64 |
62
|
simp2d |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> 0 <_ ( Re ` ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) ) |
| 65 |
62
|
simp3d |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e/ RR+ ) |
| 66 |
|
df-nel |
|- ( ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e/ RR+ <-> -. ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e. RR+ ) |
| 67 |
65 66
|
sylib |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> -. ( _i x. ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) ) e. RR+ ) |
| 68 |
59 26 63 64 67
|
eqsqrtd |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) = ( sqrt ` X ) ) |
| 69 |
1
|
ad2antrr |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> X e. Constr ) |
| 70 |
69
|
constrabscl |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( abs ` X ) e. Constr ) |
| 71 |
26
|
absge0d |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> 0 <_ ( abs ` X ) ) |
| 72 |
70 27 71
|
constrresqrtcl |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( sqrt ` ( abs ` X ) ) e. Constr ) |
| 73 |
70 69
|
constraddcl |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( abs ` X ) + X ) e. Constr ) |
| 74 |
73 56
|
constrdircl |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) e. Constr ) |
| 75 |
72 74
|
constrmulcl |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( ( sqrt ` ( abs ` X ) ) x. ( ( ( abs ` X ) + X ) / ( abs ` ( ( abs ` X ) + X ) ) ) ) e. Constr ) |
| 76 |
68 75
|
eqeltrrd |
|- ( ( ( ph /\ X =/= 0 ) /\ -. -u X e. RR+ ) -> ( sqrt ` X ) e. Constr ) |
| 77 |
25 76
|
pm2.61dan |
|- ( ( ph /\ X =/= 0 ) -> ( sqrt ` X ) e. Constr ) |
| 78 |
8 77
|
pm2.61dane |
|- ( ph -> ( sqrt ` X ) e. Constr ) |