| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrmulcl.1 |
|- ( ph -> X e. Constr ) |
| 2 |
|
constrmulcl.2 |
|- ( ph -> Y e. Constr ) |
| 3 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 4 |
3
|
replimd |
|- ( ph -> X = ( ( Re ` X ) + ( _i x. ( Im ` X ) ) ) ) |
| 5 |
2
|
constrcn |
|- ( ph -> Y e. CC ) |
| 6 |
5
|
replimd |
|- ( ph -> Y = ( ( Re ` Y ) + ( _i x. ( Im ` Y ) ) ) ) |
| 7 |
4 6
|
oveq12d |
|- ( ph -> ( X x. Y ) = ( ( ( Re ` X ) + ( _i x. ( Im ` X ) ) ) x. ( ( Re ` Y ) + ( _i x. ( Im ` Y ) ) ) ) ) |
| 8 |
3
|
recld |
|- ( ph -> ( Re ` X ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ph -> ( Re ` X ) e. CC ) |
| 10 |
|
ax-icn |
|- _i e. CC |
| 11 |
10
|
a1i |
|- ( ph -> _i e. CC ) |
| 12 |
3
|
imcld |
|- ( ph -> ( Im ` X ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ph -> ( Im ` X ) e. CC ) |
| 14 |
11 13
|
mulcld |
|- ( ph -> ( _i x. ( Im ` X ) ) e. CC ) |
| 15 |
5
|
recld |
|- ( ph -> ( Re ` Y ) e. RR ) |
| 16 |
15
|
recnd |
|- ( ph -> ( Re ` Y ) e. CC ) |
| 17 |
5
|
imcld |
|- ( ph -> ( Im ` Y ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ph -> ( Im ` Y ) e. CC ) |
| 19 |
11 18
|
mulcld |
|- ( ph -> ( _i x. ( Im ` Y ) ) e. CC ) |
| 20 |
9 14 16 19
|
muladdd |
|- ( ph -> ( ( ( Re ` X ) + ( _i x. ( Im ` X ) ) ) x. ( ( Re ` Y ) + ( _i x. ( Im ` Y ) ) ) ) = ( ( ( ( Re ` X ) x. ( Re ` Y ) ) + ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) ) + ( ( ( Re ` X ) x. ( _i x. ( Im ` Y ) ) ) + ( ( Re ` Y ) x. ( _i x. ( Im ` X ) ) ) ) ) ) |
| 21 |
1
|
constrrecl |
|- ( ph -> ( Re ` X ) e. Constr ) |
| 22 |
2
|
constrrecl |
|- ( ph -> ( Re ` Y ) e. Constr ) |
| 23 |
21 22 8 15
|
constrremulcl |
|- ( ph -> ( ( Re ` X ) x. ( Re ` Y ) ) e. Constr ) |
| 24 |
11 18 11 13
|
mul4d |
|- ( ph -> ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) = ( ( _i x. _i ) x. ( ( Im ` Y ) x. ( Im ` X ) ) ) ) |
| 25 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 26 |
25
|
oveq1i |
|- ( ( _i x. _i ) x. ( ( Im ` Y ) x. ( Im ` X ) ) ) = ( -u 1 x. ( ( Im ` Y ) x. ( Im ` X ) ) ) |
| 27 |
24 26
|
eqtrdi |
|- ( ph -> ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) = ( -u 1 x. ( ( Im ` Y ) x. ( Im ` X ) ) ) ) |
| 28 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 29 |
28
|
zconstr |
|- ( ph -> 1 e. Constr ) |
| 30 |
29
|
constrnegcl |
|- ( ph -> -u 1 e. Constr ) |
| 31 |
2
|
constrimcl |
|- ( ph -> ( Im ` Y ) e. Constr ) |
| 32 |
1
|
constrimcl |
|- ( ph -> ( Im ` X ) e. Constr ) |
| 33 |
31 32 17 12
|
constrremulcl |
|- ( ph -> ( ( Im ` Y ) x. ( Im ` X ) ) e. Constr ) |
| 34 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 35 |
34
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
| 36 |
17 12
|
remulcld |
|- ( ph -> ( ( Im ` Y ) x. ( Im ` X ) ) e. RR ) |
| 37 |
30 33 35 36
|
constrremulcl |
|- ( ph -> ( -u 1 x. ( ( Im ` Y ) x. ( Im ` X ) ) ) e. Constr ) |
| 38 |
27 37
|
eqeltrd |
|- ( ph -> ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) e. Constr ) |
| 39 |
23 38
|
constraddcl |
|- ( ph -> ( ( ( Re ` X ) x. ( Re ` Y ) ) + ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) ) e. Constr ) |
| 40 |
9 11 18
|
mul12d |
|- ( ph -> ( ( Re ` X ) x. ( _i x. ( Im ` Y ) ) ) = ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 41 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 42 |
41
|
zconstr |
|- ( ph -> 0 e. Constr ) |
| 43 |
|
iconstr |
|- _i e. Constr |
| 44 |
43
|
a1i |
|- ( ph -> _i e. Constr ) |
| 45 |
21 31 8 17
|
constrremulcl |
|- ( ph -> ( ( Re ` X ) x. ( Im ` Y ) ) e. Constr ) |
| 46 |
8 17
|
remulcld |
|- ( ph -> ( ( Re ` X ) x. ( Im ` Y ) ) e. RR ) |
| 47 |
9 18
|
mulcld |
|- ( ph -> ( ( Re ` X ) x. ( Im ` Y ) ) e. CC ) |
| 48 |
11 47
|
mulcld |
|- ( ph -> ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) e. CC ) |
| 49 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 50 |
11 49
|
subcld |
|- ( ph -> ( _i - 0 ) e. CC ) |
| 51 |
47 50
|
mulcld |
|- ( ph -> ( ( ( Re ` X ) x. ( Im ` Y ) ) x. ( _i - 0 ) ) e. CC ) |
| 52 |
51
|
addlidd |
|- ( ph -> ( 0 + ( ( ( Re ` X ) x. ( Im ` Y ) ) x. ( _i - 0 ) ) ) = ( ( ( Re ` X ) x. ( Im ` Y ) ) x. ( _i - 0 ) ) ) |
| 53 |
11
|
subid1d |
|- ( ph -> ( _i - 0 ) = _i ) |
| 54 |
53
|
oveq2d |
|- ( ph -> ( ( ( Re ` X ) x. ( Im ` Y ) ) x. ( _i - 0 ) ) = ( ( ( Re ` X ) x. ( Im ` Y ) ) x. _i ) ) |
| 55 |
47 11
|
mulcomd |
|- ( ph -> ( ( ( Re ` X ) x. ( Im ` Y ) ) x. _i ) = ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 56 |
52 54 55
|
3eqtrrd |
|- ( ph -> ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) = ( 0 + ( ( ( Re ` X ) x. ( Im ` Y ) ) x. ( _i - 0 ) ) ) ) |
| 57 |
11 47
|
absmuld |
|- ( ph -> ( abs ` ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) = ( ( abs ` _i ) x. ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) ) |
| 58 |
|
absi |
|- ( abs ` _i ) = 1 |
| 59 |
58
|
a1i |
|- ( ph -> ( abs ` _i ) = 1 ) |
| 60 |
59
|
oveq1d |
|- ( ph -> ( ( abs ` _i ) x. ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) = ( 1 x. ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) ) |
| 61 |
47
|
abscld |
|- ( ph -> ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ph -> ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) e. CC ) |
| 63 |
62
|
mullidd |
|- ( ph -> ( 1 x. ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) = ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 64 |
57 60 63
|
3eqtrd |
|- ( ph -> ( abs ` ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) = ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 65 |
48
|
subid1d |
|- ( ph -> ( ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) - 0 ) = ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 66 |
65
|
fveq2d |
|- ( ph -> ( abs ` ( ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) - 0 ) ) = ( abs ` ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) ) ) |
| 67 |
47
|
subid1d |
|- ( ph -> ( ( ( Re ` X ) x. ( Im ` Y ) ) - 0 ) = ( ( Re ` X ) x. ( Im ` Y ) ) ) |
| 68 |
67
|
fveq2d |
|- ( ph -> ( abs ` ( ( ( Re ` X ) x. ( Im ` Y ) ) - 0 ) ) = ( abs ` ( ( Re ` X ) x. ( Im ` Y ) ) ) ) |
| 69 |
64 66 68
|
3eqtr4d |
|- ( ph -> ( abs ` ( ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) - 0 ) ) = ( abs ` ( ( ( Re ` X ) x. ( Im ` Y ) ) - 0 ) ) ) |
| 70 |
42 44 42 45 42 46 48 56 69
|
constrlccl |
|- ( ph -> ( _i x. ( ( Re ` X ) x. ( Im ` Y ) ) ) e. Constr ) |
| 71 |
40 70
|
eqeltrd |
|- ( ph -> ( ( Re ` X ) x. ( _i x. ( Im ` Y ) ) ) e. Constr ) |
| 72 |
16 11 13
|
mul12d |
|- ( ph -> ( ( Re ` Y ) x. ( _i x. ( Im ` X ) ) ) = ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 73 |
22 32 15 12
|
constrremulcl |
|- ( ph -> ( ( Re ` Y ) x. ( Im ` X ) ) e. Constr ) |
| 74 |
15 12
|
remulcld |
|- ( ph -> ( ( Re ` Y ) x. ( Im ` X ) ) e. RR ) |
| 75 |
16 13
|
mulcld |
|- ( ph -> ( ( Re ` Y ) x. ( Im ` X ) ) e. CC ) |
| 76 |
11 75
|
mulcld |
|- ( ph -> ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) e. CC ) |
| 77 |
75 50
|
mulcld |
|- ( ph -> ( ( ( Re ` Y ) x. ( Im ` X ) ) x. ( _i - 0 ) ) e. CC ) |
| 78 |
77
|
addlidd |
|- ( ph -> ( 0 + ( ( ( Re ` Y ) x. ( Im ` X ) ) x. ( _i - 0 ) ) ) = ( ( ( Re ` Y ) x. ( Im ` X ) ) x. ( _i - 0 ) ) ) |
| 79 |
53
|
oveq2d |
|- ( ph -> ( ( ( Re ` Y ) x. ( Im ` X ) ) x. ( _i - 0 ) ) = ( ( ( Re ` Y ) x. ( Im ` X ) ) x. _i ) ) |
| 80 |
75 11
|
mulcomd |
|- ( ph -> ( ( ( Re ` Y ) x. ( Im ` X ) ) x. _i ) = ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 81 |
78 79 80
|
3eqtrrd |
|- ( ph -> ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) = ( 0 + ( ( ( Re ` Y ) x. ( Im ` X ) ) x. ( _i - 0 ) ) ) ) |
| 82 |
11 75
|
absmuld |
|- ( ph -> ( abs ` ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) = ( ( abs ` _i ) x. ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) ) |
| 83 |
59
|
oveq1d |
|- ( ph -> ( ( abs ` _i ) x. ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) = ( 1 x. ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) ) |
| 84 |
75
|
abscld |
|- ( ph -> ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) e. RR ) |
| 85 |
84
|
recnd |
|- ( ph -> ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) e. CC ) |
| 86 |
85
|
mullidd |
|- ( ph -> ( 1 x. ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) = ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 87 |
82 83 86
|
3eqtrd |
|- ( ph -> ( abs ` ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) = ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 88 |
76
|
subid1d |
|- ( ph -> ( ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) - 0 ) = ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 89 |
88
|
fveq2d |
|- ( ph -> ( abs ` ( ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) - 0 ) ) = ( abs ` ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) ) ) |
| 90 |
75
|
subid1d |
|- ( ph -> ( ( ( Re ` Y ) x. ( Im ` X ) ) - 0 ) = ( ( Re ` Y ) x. ( Im ` X ) ) ) |
| 91 |
90
|
fveq2d |
|- ( ph -> ( abs ` ( ( ( Re ` Y ) x. ( Im ` X ) ) - 0 ) ) = ( abs ` ( ( Re ` Y ) x. ( Im ` X ) ) ) ) |
| 92 |
87 89 91
|
3eqtr4d |
|- ( ph -> ( abs ` ( ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) - 0 ) ) = ( abs ` ( ( ( Re ` Y ) x. ( Im ` X ) ) - 0 ) ) ) |
| 93 |
42 44 42 73 42 74 76 81 92
|
constrlccl |
|- ( ph -> ( _i x. ( ( Re ` Y ) x. ( Im ` X ) ) ) e. Constr ) |
| 94 |
72 93
|
eqeltrd |
|- ( ph -> ( ( Re ` Y ) x. ( _i x. ( Im ` X ) ) ) e. Constr ) |
| 95 |
71 94
|
constraddcl |
|- ( ph -> ( ( ( Re ` X ) x. ( _i x. ( Im ` Y ) ) ) + ( ( Re ` Y ) x. ( _i x. ( Im ` X ) ) ) ) e. Constr ) |
| 96 |
39 95
|
constraddcl |
|- ( ph -> ( ( ( ( Re ` X ) x. ( Re ` Y ) ) + ( ( _i x. ( Im ` Y ) ) x. ( _i x. ( Im ` X ) ) ) ) + ( ( ( Re ` X ) x. ( _i x. ( Im ` Y ) ) ) + ( ( Re ` Y ) x. ( _i x. ( Im ` X ) ) ) ) ) e. Constr ) |
| 97 |
20 96
|
eqeltrd |
|- ( ph -> ( ( ( Re ` X ) + ( _i x. ( Im ` X ) ) ) x. ( ( Re ` Y ) + ( _i x. ( Im ` Y ) ) ) ) e. Constr ) |
| 98 |
7 97
|
eqeltrd |
|- ( ph -> ( X x. Y ) e. Constr ) |