| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqsqrtd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
eqsqrtd.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
eqsqrtd.3 |
|- ( ph -> ( A ^ 2 ) = B ) |
| 4 |
|
eqsqrtd.4 |
|- ( ph -> 0 <_ ( Re ` A ) ) |
| 5 |
|
eqsqrtd.5 |
|- ( ph -> -. ( _i x. A ) e. RR+ ) |
| 6 |
|
sqreu |
|- ( B e. CC -> E! x e. CC ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 7 |
|
reurmo |
|- ( E! x e. CC ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> E* x e. CC ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 8 |
2 6 7
|
3syl |
|- ( ph -> E* x e. CC ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 9 |
|
df-nel |
|- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
| 10 |
5 9
|
sylibr |
|- ( ph -> ( _i x. A ) e/ RR+ ) |
| 11 |
3 4 10
|
3jca |
|- ( ph -> ( ( A ^ 2 ) = B /\ 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) |
| 12 |
|
sqrtcl |
|- ( B e. CC -> ( sqrt ` B ) e. CC ) |
| 13 |
2 12
|
syl |
|- ( ph -> ( sqrt ` B ) e. CC ) |
| 14 |
|
sqrtthlem |
|- ( B e. CC -> ( ( ( sqrt ` B ) ^ 2 ) = B /\ 0 <_ ( Re ` ( sqrt ` B ) ) /\ ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) |
| 15 |
2 14
|
syl |
|- ( ph -> ( ( ( sqrt ` B ) ^ 2 ) = B /\ 0 <_ ( Re ` ( sqrt ` B ) ) /\ ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) |
| 16 |
|
oveq1 |
|- ( x = A -> ( x ^ 2 ) = ( A ^ 2 ) ) |
| 17 |
16
|
eqeq1d |
|- ( x = A -> ( ( x ^ 2 ) = B <-> ( A ^ 2 ) = B ) ) |
| 18 |
|
fveq2 |
|- ( x = A -> ( Re ` x ) = ( Re ` A ) ) |
| 19 |
18
|
breq2d |
|- ( x = A -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` A ) ) ) |
| 20 |
|
oveq2 |
|- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
| 21 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. A ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. A ) e/ RR+ ) ) |
| 22 |
20 21
|
syl |
|- ( x = A -> ( ( _i x. x ) e/ RR+ <-> ( _i x. A ) e/ RR+ ) ) |
| 23 |
17 19 22
|
3anbi123d |
|- ( x = A -> ( ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( A ^ 2 ) = B /\ 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
| 24 |
|
oveq1 |
|- ( x = ( sqrt ` B ) -> ( x ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) ) |
| 25 |
24
|
eqeq1d |
|- ( x = ( sqrt ` B ) -> ( ( x ^ 2 ) = B <-> ( ( sqrt ` B ) ^ 2 ) = B ) ) |
| 26 |
|
fveq2 |
|- ( x = ( sqrt ` B ) -> ( Re ` x ) = ( Re ` ( sqrt ` B ) ) ) |
| 27 |
26
|
breq2d |
|- ( x = ( sqrt ` B ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( sqrt ` B ) ) ) ) |
| 28 |
|
oveq2 |
|- ( x = ( sqrt ` B ) -> ( _i x. x ) = ( _i x. ( sqrt ` B ) ) ) |
| 29 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( sqrt ` B ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) |
| 30 |
28 29
|
syl |
|- ( x = ( sqrt ` B ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) |
| 31 |
25 27 30
|
3anbi123d |
|- ( x = ( sqrt ` B ) -> ( ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( sqrt ` B ) ^ 2 ) = B /\ 0 <_ ( Re ` ( sqrt ` B ) ) /\ ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) ) |
| 32 |
23 31
|
rmoi |
|- ( ( E* x e. CC ( ( x ^ 2 ) = B /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( A e. CC /\ ( ( A ^ 2 ) = B /\ 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) /\ ( ( sqrt ` B ) e. CC /\ ( ( ( sqrt ` B ) ^ 2 ) = B /\ 0 <_ ( Re ` ( sqrt ` B ) ) /\ ( _i x. ( sqrt ` B ) ) e/ RR+ ) ) ) -> A = ( sqrt ` B ) ) |
| 33 |
8 1 11 13 15 32
|
syl122anc |
|- ( ph -> A = ( sqrt ` B ) ) |