| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( deg1 ` ( CCfld |`s QQ ) ) = ( deg1 ` ( CCfld |`s QQ ) ) |
| 2 |
|
eqid |
|- ( CCfld minPoly QQ ) = ( CCfld minPoly QQ ) |
| 3 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 4 |
|
3cn |
|- 3 e. CC |
| 5 |
|
3ne0 |
|- 3 =/= 0 |
| 6 |
4 5
|
reccli |
|- ( 1 / 3 ) e. CC |
| 7 |
6
|
a1i |
|- ( T. -> ( 1 / 3 ) e. CC ) |
| 8 |
3 7
|
cxpcld |
|- ( T. -> ( 2 ^c ( 1 / 3 ) ) e. CC ) |
| 9 |
|
eqidd |
|- ( T. -> ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) = ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) |
| 10 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 11 |
|
eqid |
|- ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 12 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) |
| 13 |
|
eqid |
|- ( Poly1 ` ( CCfld |`s QQ ) ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 14 |
|
eqid |
|- ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 15 |
|
eqid |
|- ( var1 ` ( CCfld |`s QQ ) ) = ( var1 ` ( CCfld |`s QQ ) ) |
| 16 |
|
eqid |
|- ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) = ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) |
| 17 |
|
eqid |
|- ( 2 ^c ( 1 / 3 ) ) = ( 2 ^c ( 1 / 3 ) ) |
| 18 |
10 11 12 13 14 15 1 16 17 2
|
2sqr3minply |
|- ( ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) = ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) /\ ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) ) = 3 ) |
| 19 |
18
|
simpli |
|- ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) = ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) |
| 20 |
19
|
fveq2i |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) ) = ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) |
| 21 |
18
|
simpri |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( -g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 2 ) ) ) = 3 |
| 22 |
20 21
|
eqtr3i |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) = 3 |
| 23 |
|
3nn0 |
|- 3 e. NN0 |
| 24 |
22 23
|
eqeltri |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) e. NN0 |
| 25 |
24
|
a1i |
|- ( T. -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) e. NN0 ) |
| 26 |
22
|
a1i |
|- ( n e. NN0 -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) = 3 ) |
| 27 |
|
3z |
|- 3 e. ZZ |
| 28 |
|
iddvds |
|- ( 3 e. ZZ -> 3 || 3 ) |
| 29 |
27 28
|
ax-mp |
|- 3 || 3 |
| 30 |
|
simpr |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 = ( 2 ^ n ) ) |
| 31 |
29 30
|
breqtrid |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 || ( 2 ^ n ) ) |
| 32 |
|
3prm |
|- 3 e. Prime |
| 33 |
|
2prm |
|- 2 e. Prime |
| 34 |
|
prmdvdsexpr |
|- ( ( 3 e. Prime /\ 2 e. Prime /\ n e. NN0 ) -> ( 3 || ( 2 ^ n ) -> 3 = 2 ) ) |
| 35 |
32 33 34
|
mp3an12 |
|- ( n e. NN0 -> ( 3 || ( 2 ^ n ) -> 3 = 2 ) ) |
| 36 |
35
|
imp |
|- ( ( n e. NN0 /\ 3 || ( 2 ^ n ) ) -> 3 = 2 ) |
| 37 |
31 36
|
syldan |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 = 2 ) |
| 38 |
|
2re |
|- 2 e. RR |
| 39 |
|
2lt3 |
|- 2 < 3 |
| 40 |
38 39
|
gtneii |
|- 3 =/= 2 |
| 41 |
40
|
neii |
|- -. 3 = 2 |
| 42 |
41
|
a1i |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> -. 3 = 2 ) |
| 43 |
37 42
|
pm2.65da |
|- ( n e. NN0 -> -. 3 = ( 2 ^ n ) ) |
| 44 |
43
|
neqned |
|- ( n e. NN0 -> 3 =/= ( 2 ^ n ) ) |
| 45 |
26 44
|
eqnetrd |
|- ( n e. NN0 -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) =/= ( 2 ^ n ) ) |
| 46 |
45
|
adantl |
|- ( ( T. /\ n e. NN0 ) -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` ( 2 ^c ( 1 / 3 ) ) ) ) =/= ( 2 ^ n ) ) |
| 47 |
1 2 8 9 25 46
|
constrcon |
|- ( T. -> -. ( 2 ^c ( 1 / 3 ) ) e. Constr ) |
| 48 |
47
|
mptru |
|- -. ( 2 ^c ( 1 / 3 ) ) e. Constr |
| 49 |
48
|
nelir |
|- ( 2 ^c ( 1 / 3 ) ) e/ Constr |