| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqr3minply.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | 2sqr3minply.1 |  |-  .- = ( -g ` P ) | 
						
							| 3 |  | 2sqr3minply.2 |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 4 |  | 2sqr3minply.p |  |-  P = ( Poly1 ` Q ) | 
						
							| 5 |  | 2sqr3minply.k |  |-  K = ( algSc ` P ) | 
						
							| 6 |  | 2sqr3minply.x |  |-  X = ( var1 ` Q ) | 
						
							| 7 |  | 2sqr3minply.d |  |-  D = ( deg1 ` Q ) | 
						
							| 8 |  | 2sqr3minply.f |  |-  F = ( ( 3 .^ X ) .- ( K ` 2 ) ) | 
						
							| 9 |  | 2sqr3minply.a |  |-  A = ( 2 ^c ( 1 / 3 ) ) | 
						
							| 10 |  | 2sqr3minply.m |  |-  M = ( CCfld minPoly QQ ) | 
						
							| 11 |  | eqid |  |-  ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) | 
						
							| 12 | 1 | fveq2i |  |-  ( Poly1 ` Q ) = ( Poly1 ` ( CCfld |`s QQ ) ) | 
						
							| 13 | 4 12 | eqtri |  |-  P = ( Poly1 ` ( CCfld |`s QQ ) ) | 
						
							| 14 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 15 |  | cndrng |  |-  CCfld e. DivRing | 
						
							| 16 |  | cncrng |  |-  CCfld e. CRing | 
						
							| 17 |  | isfld |  |-  ( CCfld e. Field <-> ( CCfld e. DivRing /\ CCfld e. CRing ) ) | 
						
							| 18 | 15 16 17 | mpbir2an |  |-  CCfld e. Field | 
						
							| 19 | 18 | a1i |  |-  ( T. -> CCfld e. Field ) | 
						
							| 20 |  | qsubdrg |  |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) | 
						
							| 21 | 20 | simpli |  |-  QQ e. ( SubRing ` CCfld ) | 
						
							| 22 | 20 | simpri |  |-  ( CCfld |`s QQ ) e. DivRing | 
						
							| 23 |  | issdrg |  |-  ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) | 
						
							| 24 | 15 21 22 23 | mpbir3an |  |-  QQ e. ( SubDRing ` CCfld ) | 
						
							| 25 | 24 | a1i |  |-  ( T. -> QQ e. ( SubDRing ` CCfld ) ) | 
						
							| 26 |  | 2cn |  |-  2 e. CC | 
						
							| 27 |  | 3cn |  |-  3 e. CC | 
						
							| 28 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 29 | 27 28 | reccli |  |-  ( 1 / 3 ) e. CC | 
						
							| 30 |  | cxpcl |  |-  ( ( 2 e. CC /\ ( 1 / 3 ) e. CC ) -> ( 2 ^c ( 1 / 3 ) ) e. CC ) | 
						
							| 31 | 26 29 30 | mp2an |  |-  ( 2 ^c ( 1 / 3 ) ) e. CC | 
						
							| 32 | 9 31 | eqeltri |  |-  A e. CC | 
						
							| 33 | 32 | a1i |  |-  ( T. -> A e. CC ) | 
						
							| 34 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 36 | 8 | fveq2i |  |-  ( ( CCfld evalSub1 QQ ) ` F ) = ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) | 
						
							| 37 | 36 | fveq1i |  |-  ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) | 
						
							| 38 | 37 | a1i |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) ) | 
						
							| 39 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 40 |  | cnfldsub |  |-  - = ( -g ` CCfld ) | 
						
							| 41 | 16 | a1i |  |-  ( T. -> CCfld e. CRing ) | 
						
							| 42 | 21 | a1i |  |-  ( T. -> QQ e. ( SubRing ` CCfld ) ) | 
						
							| 43 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 44 | 43 39 | mgpbas |  |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) | 
						
							| 45 | 1 | qdrng |  |-  Q e. DivRing | 
						
							| 46 | 45 | a1i |  |-  ( T. -> Q e. DivRing ) | 
						
							| 47 | 46 | drngringd |  |-  ( T. -> Q e. Ring ) | 
						
							| 48 | 4 | ply1ring |  |-  ( Q e. Ring -> P e. Ring ) | 
						
							| 49 | 47 48 | syl |  |-  ( T. -> P e. Ring ) | 
						
							| 50 | 43 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 51 | 49 50 | syl |  |-  ( T. -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 52 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 53 | 52 | a1i |  |-  ( T. -> 3 e. NN0 ) | 
						
							| 54 | 6 4 39 | vr1cl |  |-  ( Q e. Ring -> X e. ( Base ` P ) ) | 
						
							| 55 | 47 54 | syl |  |-  ( T. -> X e. ( Base ` P ) ) | 
						
							| 56 | 44 3 51 53 55 | mulgnn0cld |  |-  ( T. -> ( 3 .^ X ) e. ( Base ` P ) ) | 
						
							| 57 | 47 | mptru |  |-  Q e. Ring | 
						
							| 58 | 4 | ply1sca |  |-  ( Q e. Ring -> Q = ( Scalar ` P ) ) | 
						
							| 59 | 57 58 | ax-mp |  |-  Q = ( Scalar ` P ) | 
						
							| 60 | 4 | ply1lmod |  |-  ( Q e. Ring -> P e. LMod ) | 
						
							| 61 | 47 60 | syl |  |-  ( T. -> P e. LMod ) | 
						
							| 62 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 63 | 5 59 49 61 62 39 | asclf |  |-  ( T. -> K : QQ --> ( Base ` P ) ) | 
						
							| 64 |  | 2z |  |-  2 e. ZZ | 
						
							| 65 |  | zq |  |-  ( 2 e. ZZ -> 2 e. QQ ) | 
						
							| 66 | 64 65 | mp1i |  |-  ( T. -> 2 e. QQ ) | 
						
							| 67 | 63 66 | ffvelcdmd |  |-  ( T. -> ( K ` 2 ) e. ( Base ` P ) ) | 
						
							| 68 | 11 14 4 1 39 2 40 41 42 56 67 33 | evls1subd |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) ) | 
						
							| 69 |  | eqid |  |-  ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) | 
						
							| 70 | 11 14 4 1 39 41 42 3 69 53 55 33 | evls1expd |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) ) | 
						
							| 71 | 11 6 1 14 41 42 | evls1var |  |-  ( T. -> ( ( CCfld evalSub1 QQ ) ` X ) = ( _I |` CC ) ) | 
						
							| 72 | 71 | fveq1d |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = ( ( _I |` CC ) ` A ) ) | 
						
							| 73 |  | fvresi |  |-  ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) | 
						
							| 74 | 32 73 | mp1i |  |-  ( T. -> ( ( _I |` CC ) ` A ) = A ) | 
						
							| 75 | 72 74 | eqtrd |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = A ) | 
						
							| 76 | 75 | oveq2d |  |-  ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) ) | 
						
							| 77 |  | cnfldexp |  |-  ( ( A e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) | 
						
							| 78 | 33 53 77 | syl2anc |  |-  ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) | 
						
							| 79 | 70 76 78 | 3eqtrd |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( A ^ 3 ) ) | 
						
							| 80 | 9 | oveq1i |  |-  ( A ^ 3 ) = ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) | 
						
							| 81 |  | 3nn |  |-  3 e. NN | 
						
							| 82 |  | cxproot |  |-  ( ( 2 e. CC /\ 3 e. NN ) -> ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 ) | 
						
							| 83 | 26 81 82 | mp2an |  |-  ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 | 
						
							| 84 | 80 83 | eqtri |  |-  ( A ^ 3 ) = 2 | 
						
							| 85 | 79 84 | eqtrdi |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = 2 ) | 
						
							| 86 | 11 4 1 14 5 41 42 66 33 | evls1scafv |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) = 2 ) | 
						
							| 87 | 85 86 | oveq12d |  |-  ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = ( 2 - 2 ) ) | 
						
							| 88 | 26 | subidi |  |-  ( 2 - 2 ) = 0 | 
						
							| 89 | 87 88 | eqtrdi |  |-  ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = 0 ) | 
						
							| 90 | 38 68 89 | 3eqtrd |  |-  ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = 0 ) | 
						
							| 91 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 92 |  | eqid |  |-  ( eval1 ` Q ) = ( eval1 ` Q ) | 
						
							| 93 |  | fldsdrgfld |  |-  ( ( CCfld e. Field /\ QQ e. ( SubDRing ` CCfld ) ) -> ( CCfld |`s QQ ) e. Field ) | 
						
							| 94 | 18 24 93 | mp2an |  |-  ( CCfld |`s QQ ) e. Field | 
						
							| 95 | 1 94 | eqeltri |  |-  Q e. Field | 
						
							| 96 | 95 | a1i |  |-  ( T. -> Q e. Field ) | 
						
							| 97 | 49 | ringgrpd |  |-  ( T. -> P e. Grp ) | 
						
							| 98 | 39 2 | grpsubcl |  |-  ( ( P e. Grp /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) | 
						
							| 99 | 97 56 67 98 | syl3anc |  |-  ( T. -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) | 
						
							| 100 | 8 99 | eqeltrid |  |-  ( T. -> F e. ( Base ` P ) ) | 
						
							| 101 | 96 | fldcrngd |  |-  ( T. -> Q e. CRing ) | 
						
							| 102 | 92 4 39 101 62 100 | evl1fvf |  |-  ( T. -> ( ( eval1 ` Q ) ` F ) : QQ --> QQ ) | 
						
							| 103 | 102 | ffnd |  |-  ( T. -> ( ( eval1 ` Q ) ` F ) Fn QQ ) | 
						
							| 104 |  | fniniseg2 |  |-  ( ( ( eval1 ` Q ) ` F ) Fn QQ -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) | 
						
							| 105 | 103 104 | syl |  |-  ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) | 
						
							| 106 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 107 | 1 106 | ressmulr |  |-  ( QQ e. ( SubRing ` CCfld ) -> x. = ( .r ` Q ) ) | 
						
							| 108 | 21 107 | ax-mp |  |-  x. = ( .r ` Q ) | 
						
							| 109 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 110 | 1 109 | ressplusg |  |-  ( QQ e. ( SubRing ` CCfld ) -> + = ( +g ` Q ) ) | 
						
							| 111 | 21 110 | ax-mp |  |-  + = ( +g ` Q ) | 
						
							| 112 |  | eqid |  |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 113 |  | eqid |  |-  ( coe1 ` F ) = ( coe1 ` F ) | 
						
							| 114 | 8 | fveq2i |  |-  ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) | 
						
							| 115 | 114 | a1i |  |-  ( T. -> ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) | 
						
							| 116 | 8 | fveq2i |  |-  ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) | 
						
							| 117 | 116 | a1i |  |-  ( T. -> ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) | 
						
							| 118 |  | 3pos |  |-  0 < 3 | 
						
							| 119 | 118 | a1i |  |-  ( T. -> 0 < 3 ) | 
						
							| 120 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 121 | 120 | a1i |  |-  ( T. -> 2 =/= 0 ) | 
						
							| 122 | 7 4 62 5 91 | deg1scl |  |-  ( ( Q e. Ring /\ 2 e. QQ /\ 2 =/= 0 ) -> ( D ` ( K ` 2 ) ) = 0 ) | 
						
							| 123 | 47 66 121 122 | syl3anc |  |-  ( T. -> ( D ` ( K ` 2 ) ) = 0 ) | 
						
							| 124 |  | drngnzr |  |-  ( Q e. DivRing -> Q e. NzRing ) | 
						
							| 125 | 45 124 | mp1i |  |-  ( T. -> Q e. NzRing ) | 
						
							| 126 | 7 4 6 43 3 | deg1pw |  |-  ( ( Q e. NzRing /\ 3 e. NN0 ) -> ( D ` ( 3 .^ X ) ) = 3 ) | 
						
							| 127 | 125 53 126 | syl2anc |  |-  ( T. -> ( D ` ( 3 .^ X ) ) = 3 ) | 
						
							| 128 | 119 123 127 | 3brtr4d |  |-  ( T. -> ( D ` ( K ` 2 ) ) < ( D ` ( 3 .^ X ) ) ) | 
						
							| 129 | 4 7 47 39 2 56 67 128 | deg1sub |  |-  ( T. -> ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) = ( D ` ( 3 .^ X ) ) ) | 
						
							| 130 | 117 129 127 | 3eqtrd |  |-  ( T. -> ( D ` F ) = 3 ) | 
						
							| 131 | 115 130 | fveq12d |  |-  ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) ) | 
						
							| 132 |  | eqid |  |-  ( -g ` Q ) = ( -g ` Q ) | 
						
							| 133 | 4 39 2 132 | coe1subfv |  |-  ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) | 
						
							| 134 | 47 56 67 53 133 | syl31anc |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) | 
						
							| 135 |  | subrgsubg |  |-  ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) | 
						
							| 136 | 21 135 | mp1i |  |-  ( T. -> QQ e. ( SubGrp ` CCfld ) ) | 
						
							| 137 |  | eqid |  |-  ( coe1 ` ( 3 .^ X ) ) = ( coe1 ` ( 3 .^ X ) ) | 
						
							| 138 | 137 39 4 62 | coe1fvalcl |  |-  ( ( ( 3 .^ X ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) | 
						
							| 139 | 56 53 138 | syl2anc |  |-  ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) | 
						
							| 140 |  | eqid |  |-  ( coe1 ` ( K ` 2 ) ) = ( coe1 ` ( K ` 2 ) ) | 
						
							| 141 | 140 39 4 62 | coe1fvalcl |  |-  ( ( ( K ` 2 ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) | 
						
							| 142 | 67 53 141 | syl2anc |  |-  ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) | 
						
							| 143 | 40 1 132 | subgsub |  |-  ( ( QQ e. ( SubGrp ` CCfld ) /\ ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ /\ ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) | 
						
							| 144 | 136 139 142 143 | syl3anc |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) | 
						
							| 145 |  | iftrue |  |-  ( i = 3 -> if ( i = 3 , 1 , 0 ) = 1 ) | 
						
							| 146 | 1 | qrng1 |  |-  1 = ( 1r ` Q ) | 
						
							| 147 | 4 6 3 47 53 91 146 | coe1mon |  |-  ( T. -> ( coe1 ` ( 3 .^ X ) ) = ( i e. NN0 |-> if ( i = 3 , 1 , 0 ) ) ) | 
						
							| 148 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 149 | 145 147 53 148 | fvmptd4 |  |-  ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) = 1 ) | 
						
							| 150 | 28 | neii |  |-  -. 3 = 0 | 
						
							| 151 |  | eqeq1 |  |-  ( i = 3 -> ( i = 0 <-> 3 = 0 ) ) | 
						
							| 152 | 150 151 | mtbiri |  |-  ( i = 3 -> -. i = 0 ) | 
						
							| 153 | 152 | iffalsed |  |-  ( i = 3 -> if ( i = 0 , 2 , 0 ) = 0 ) | 
						
							| 154 | 4 5 62 91 | coe1scl |  |-  ( ( Q e. Ring /\ 2 e. QQ ) -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) | 
						
							| 155 | 47 66 154 | syl2anc |  |-  ( T. -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) | 
						
							| 156 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 157 | 156 | a1i |  |-  ( T. -> 0 e. NN0 ) | 
						
							| 158 | 153 155 53 157 | fvmptd4 |  |-  ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) = 0 ) | 
						
							| 159 | 149 158 | oveq12d |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( 1 - 0 ) ) | 
						
							| 160 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 161 | 159 160 | eqtrdi |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) | 
						
							| 162 | 144 161 | eqtr3d |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) | 
						
							| 163 | 131 134 162 | 3eqtrd |  |-  ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) | 
						
							| 164 | 130 | fveq2d |  |-  ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` 3 ) ) | 
						
							| 165 | 163 164 | eqtr3d |  |-  ( T. -> 1 = ( ( coe1 ` F ) ` 3 ) ) | 
						
							| 166 | 165 | mptru |  |-  1 = ( ( coe1 ` F ) ` 3 ) | 
						
							| 167 | 115 | fveq1d |  |-  ( T. -> ( ( coe1 ` F ) ` 2 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) ) | 
						
							| 168 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 169 | 168 | a1i |  |-  ( T. -> 2 e. NN0 ) | 
						
							| 170 | 4 39 2 132 | coe1subfv |  |-  ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) | 
						
							| 171 | 47 56 67 169 170 | syl31anc |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) | 
						
							| 172 |  | 2re |  |-  2 e. RR | 
						
							| 173 |  | 2lt3 |  |-  2 < 3 | 
						
							| 174 | 172 173 | ltneii |  |-  2 =/= 3 | 
						
							| 175 |  | neeq1 |  |-  ( i = 2 -> ( i =/= 3 <-> 2 =/= 3 ) ) | 
						
							| 176 | 174 175 | mpbiri |  |-  ( i = 2 -> i =/= 3 ) | 
						
							| 177 | 176 | adantl |  |-  ( ( T. /\ i = 2 ) -> i =/= 3 ) | 
						
							| 178 | 177 | neneqd |  |-  ( ( T. /\ i = 2 ) -> -. i = 3 ) | 
						
							| 179 | 178 | iffalsed |  |-  ( ( T. /\ i = 2 ) -> if ( i = 3 , 1 , 0 ) = 0 ) | 
						
							| 180 | 147 179 169 157 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) = 0 ) | 
						
							| 181 |  | neeq1 |  |-  ( i = 2 -> ( i =/= 0 <-> 2 =/= 0 ) ) | 
						
							| 182 | 120 181 | mpbiri |  |-  ( i = 2 -> i =/= 0 ) | 
						
							| 183 | 182 | neneqd |  |-  ( i = 2 -> -. i = 0 ) | 
						
							| 184 | 183 | adantl |  |-  ( ( T. /\ i = 2 ) -> -. i = 0 ) | 
						
							| 185 | 184 | iffalsed |  |-  ( ( T. /\ i = 2 ) -> if ( i = 0 , 2 , 0 ) = 0 ) | 
						
							| 186 | 155 185 169 157 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 2 ) = 0 ) | 
						
							| 187 | 180 186 | oveq12d |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 188 | 171 187 | eqtrd |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 189 | 158 142 | eqeltrrd |  |-  ( T. -> 0 e. QQ ) | 
						
							| 190 | 40 1 132 | subgsub |  |-  ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 0 e. QQ ) -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 191 | 136 189 189 190 | syl3anc |  |-  ( T. -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 192 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 193 | 191 192 | eqtr3di |  |-  ( T. -> ( 0 ( -g ` Q ) 0 ) = 0 ) | 
						
							| 194 | 167 188 193 | 3eqtrrd |  |-  ( T. -> 0 = ( ( coe1 ` F ) ` 2 ) ) | 
						
							| 195 | 194 | mptru |  |-  0 = ( ( coe1 ` F ) ` 2 ) | 
						
							| 196 | 115 | fveq1d |  |-  ( T. -> ( ( coe1 ` F ) ` 1 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) ) | 
						
							| 197 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 198 | 197 | a1i |  |-  ( T. -> 1 e. NN0 ) | 
						
							| 199 | 4 39 2 132 | coe1subfv |  |-  ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) | 
						
							| 200 | 47 56 67 198 199 | syl31anc |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) | 
						
							| 201 |  | 1re |  |-  1 e. RR | 
						
							| 202 |  | 1lt3 |  |-  1 < 3 | 
						
							| 203 | 201 202 | ltneii |  |-  1 =/= 3 | 
						
							| 204 |  | neeq1 |  |-  ( i = 1 -> ( i =/= 3 <-> 1 =/= 3 ) ) | 
						
							| 205 | 203 204 | mpbiri |  |-  ( i = 1 -> i =/= 3 ) | 
						
							| 206 | 205 | neneqd |  |-  ( i = 1 -> -. i = 3 ) | 
						
							| 207 | 206 | adantl |  |-  ( ( T. /\ i = 1 ) -> -. i = 3 ) | 
						
							| 208 | 207 | iffalsed |  |-  ( ( T. /\ i = 1 ) -> if ( i = 3 , 1 , 0 ) = 0 ) | 
						
							| 209 | 147 208 198 157 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) = 0 ) | 
						
							| 210 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 211 |  | neeq1 |  |-  ( i = 1 -> ( i =/= 0 <-> 1 =/= 0 ) ) | 
						
							| 212 | 210 211 | mpbiri |  |-  ( i = 1 -> i =/= 0 ) | 
						
							| 213 | 212 | neneqd |  |-  ( i = 1 -> -. i = 0 ) | 
						
							| 214 | 213 | adantl |  |-  ( ( T. /\ i = 1 ) -> -. i = 0 ) | 
						
							| 215 | 214 | iffalsed |  |-  ( ( T. /\ i = 1 ) -> if ( i = 0 , 2 , 0 ) = 0 ) | 
						
							| 216 | 155 215 198 157 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 1 ) = 0 ) | 
						
							| 217 | 209 216 | oveq12d |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 218 | 200 217 | eqtrd |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( 0 ( -g ` Q ) 0 ) ) | 
						
							| 219 | 196 218 193 | 3eqtrrd |  |-  ( T. -> 0 = ( ( coe1 ` F ) ` 1 ) ) | 
						
							| 220 | 219 | mptru |  |-  0 = ( ( coe1 ` F ) ` 1 ) | 
						
							| 221 | 115 | fveq1d |  |-  ( T. -> ( ( coe1 ` F ) ` 0 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) ) | 
						
							| 222 | 4 39 2 132 | coe1subfv |  |-  ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) | 
						
							| 223 | 47 56 67 157 222 | syl31anc |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) | 
						
							| 224 | 28 | necomi |  |-  0 =/= 3 | 
						
							| 225 |  | neeq1 |  |-  ( i = 0 -> ( i =/= 3 <-> 0 =/= 3 ) ) | 
						
							| 226 | 224 225 | mpbiri |  |-  ( i = 0 -> i =/= 3 ) | 
						
							| 227 | 226 | neneqd |  |-  ( i = 0 -> -. i = 3 ) | 
						
							| 228 | 227 | adantl |  |-  ( ( T. /\ i = 0 ) -> -. i = 3 ) | 
						
							| 229 | 228 | iffalsed |  |-  ( ( T. /\ i = 0 ) -> if ( i = 3 , 1 , 0 ) = 0 ) | 
						
							| 230 | 147 229 157 157 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) = 0 ) | 
						
							| 231 |  | simpr |  |-  ( ( T. /\ i = 0 ) -> i = 0 ) | 
						
							| 232 | 231 | iftrued |  |-  ( ( T. /\ i = 0 ) -> if ( i = 0 , 2 , 0 ) = 2 ) | 
						
							| 233 | 155 232 157 169 | fvmptd |  |-  ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 0 ) = 2 ) | 
						
							| 234 | 230 233 | oveq12d |  |-  ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) = ( 0 ( -g ` Q ) 2 ) ) | 
						
							| 235 | 223 234 | eqtrd |  |-  ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( 0 ( -g ` Q ) 2 ) ) | 
						
							| 236 |  | df-neg |  |-  -u 2 = ( 0 - 2 ) | 
						
							| 237 | 40 1 132 | subgsub |  |-  ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 2 e. QQ ) -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) | 
						
							| 238 | 136 189 66 237 | syl3anc |  |-  ( T. -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) | 
						
							| 239 | 236 238 | eqtr2id |  |-  ( T. -> ( 0 ( -g ` Q ) 2 ) = -u 2 ) | 
						
							| 240 | 221 235 239 | 3eqtrrd |  |-  ( T. -> -u 2 = ( ( coe1 ` F ) ` 0 ) ) | 
						
							| 241 | 240 | mptru |  |-  -u 2 = ( ( coe1 ` F ) ` 0 ) | 
						
							| 242 | 95 | a1i |  |-  ( x e. QQ -> Q e. Field ) | 
						
							| 243 | 242 | fldcrngd |  |-  ( x e. QQ -> Q e. CRing ) | 
						
							| 244 | 100 | mptru |  |-  F e. ( Base ` P ) | 
						
							| 245 | 244 | a1i |  |-  ( x e. QQ -> F e. ( Base ` P ) ) | 
						
							| 246 | 130 | mptru |  |-  ( D ` F ) = 3 | 
						
							| 247 | 246 | a1i |  |-  ( x e. QQ -> ( D ` F ) = 3 ) | 
						
							| 248 |  | id |  |-  ( x e. QQ -> x e. QQ ) | 
						
							| 249 | 4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248 | evl1deg3 |  |-  ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) ) | 
						
							| 250 |  | qsscn |  |-  QQ C_ CC | 
						
							| 251 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s QQ ) = ( ( mulGrp ` CCfld ) |`s QQ ) | 
						
							| 252 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 253 | 252 14 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 254 | 251 253 | ressbas2 |  |-  ( QQ C_ CC -> QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) ) | 
						
							| 255 | 250 254 | ax-mp |  |-  QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) | 
						
							| 256 | 1 252 | mgpress |  |-  ( ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) ) | 
						
							| 257 | 15 21 256 | mp2an |  |-  ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) | 
						
							| 258 | 257 | fveq2i |  |-  ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) = ( Base ` ( mulGrp ` Q ) ) | 
						
							| 259 | 255 258 | eqtri |  |-  QQ = ( Base ` ( mulGrp ` Q ) ) | 
						
							| 260 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 261 | 260 | ringmgp |  |-  ( Q e. Ring -> ( mulGrp ` Q ) e. Mnd ) | 
						
							| 262 | 57 261 | mp1i |  |-  ( x e. QQ -> ( mulGrp ` Q ) e. Mnd ) | 
						
							| 263 | 52 | a1i |  |-  ( x e. QQ -> 3 e. NN0 ) | 
						
							| 264 | 259 112 262 263 248 | mulgnn0cld |  |-  ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) | 
						
							| 265 | 250 264 | sselid |  |-  ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) | 
						
							| 266 | 265 | mullidd |  |-  ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) | 
						
							| 267 | 257 | eqcomi |  |-  ( mulGrp ` Q ) = ( ( mulGrp ` CCfld ) |`s QQ ) | 
						
							| 268 | 250 253 | sseqtri |  |-  QQ C_ ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 269 | 268 | a1i |  |-  ( x e. QQ -> QQ C_ ( Base ` ( mulGrp ` CCfld ) ) ) | 
						
							| 270 | 81 | a1i |  |-  ( x e. QQ -> 3 e. NN ) | 
						
							| 271 | 267 269 248 270 | ressmulgnnd |  |-  ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) ) | 
						
							| 272 |  | qcn |  |-  ( x e. QQ -> x e. CC ) | 
						
							| 273 |  | cnfldexp |  |-  ( ( x e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) | 
						
							| 274 | 272 263 273 | syl2anc |  |-  ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) | 
						
							| 275 | 266 271 274 | 3eqtrd |  |-  ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( x ^ 3 ) ) | 
						
							| 276 | 168 | a1i |  |-  ( x e. QQ -> 2 e. NN0 ) | 
						
							| 277 | 259 112 262 276 248 | mulgnn0cld |  |-  ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) | 
						
							| 278 | 250 277 | sselid |  |-  ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) | 
						
							| 279 | 278 | mul02d |  |-  ( x e. QQ -> ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) = 0 ) | 
						
							| 280 | 275 279 | oveq12d |  |-  ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( ( x ^ 3 ) + 0 ) ) | 
						
							| 281 | 272 263 | expcld |  |-  ( x e. QQ -> ( x ^ 3 ) e. CC ) | 
						
							| 282 | 281 | addridd |  |-  ( x e. QQ -> ( ( x ^ 3 ) + 0 ) = ( x ^ 3 ) ) | 
						
							| 283 | 280 282 | eqtrd |  |-  ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( x ^ 3 ) ) | 
						
							| 284 | 272 | mul02d |  |-  ( x e. QQ -> ( 0 x. x ) = 0 ) | 
						
							| 285 | 284 | oveq1d |  |-  ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = ( 0 + -u 2 ) ) | 
						
							| 286 | 26 | a1i |  |-  ( x e. QQ -> 2 e. CC ) | 
						
							| 287 | 286 | negcld |  |-  ( x e. QQ -> -u 2 e. CC ) | 
						
							| 288 | 287 | addlidd |  |-  ( x e. QQ -> ( 0 + -u 2 ) = -u 2 ) | 
						
							| 289 | 285 288 | eqtrd |  |-  ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = -u 2 ) | 
						
							| 290 | 283 289 | oveq12d |  |-  ( x e. QQ -> ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) = ( ( x ^ 3 ) + -u 2 ) ) | 
						
							| 291 | 281 286 | negsubd |  |-  ( x e. QQ -> ( ( x ^ 3 ) + -u 2 ) = ( ( x ^ 3 ) - 2 ) ) | 
						
							| 292 | 249 290 291 | 3eqtrd |  |-  ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( x ^ 3 ) - 2 ) ) | 
						
							| 293 |  | 2prm |  |-  2 e. Prime | 
						
							| 294 |  | 3z |  |-  3 e. ZZ | 
						
							| 295 |  | 3re |  |-  3 e. RR | 
						
							| 296 | 172 295 173 | ltleii |  |-  2 <_ 3 | 
						
							| 297 | 64 | eluz1i |  |-  ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) | 
						
							| 298 | 294 296 297 | mpbir2an |  |-  3 e. ( ZZ>= ` 2 ) | 
						
							| 299 |  | rtprmirr |  |-  ( ( 2 e. Prime /\ 3 e. ( ZZ>= ` 2 ) ) -> ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) ) | 
						
							| 300 | 293 298 299 | mp2an |  |-  ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) | 
						
							| 301 |  | eldifn |  |-  ( ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) -> -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) | 
						
							| 302 | 300 301 | ax-mp |  |-  -. ( 2 ^c ( 1 / 3 ) ) e. QQ | 
						
							| 303 |  | nelne2 |  |-  ( ( x e. QQ /\ -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) -> x =/= ( 2 ^c ( 1 / 3 ) ) ) | 
						
							| 304 | 302 303 | mpan2 |  |-  ( x e. QQ -> x =/= ( 2 ^c ( 1 / 3 ) ) ) | 
						
							| 305 |  | qre |  |-  ( x e. QQ -> x e. RR ) | 
						
							| 306 | 305 | adantr |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR ) | 
						
							| 307 |  | 2pos |  |-  0 < 2 | 
						
							| 308 | 281 286 | subeq0ad |  |-  ( x e. QQ -> ( ( ( x ^ 3 ) - 2 ) = 0 <-> ( x ^ 3 ) = 2 ) ) | 
						
							| 309 | 308 | biimpa |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^ 3 ) = 2 ) | 
						
							| 310 | 307 309 | breqtrrid |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < ( x ^ 3 ) ) | 
						
							| 311 | 81 | a1i |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. NN ) | 
						
							| 312 |  | n2dvds3 |  |-  -. 2 || 3 | 
						
							| 313 | 312 | a1i |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> -. 2 || 3 ) | 
						
							| 314 | 306 311 313 | expgt0b |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 0 < x <-> 0 < ( x ^ 3 ) ) ) | 
						
							| 315 | 310 314 | mpbird |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < x ) | 
						
							| 316 | 306 315 | elrpd |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR+ ) | 
						
							| 317 | 295 | a1i |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. RR ) | 
						
							| 318 | 29 | a1i |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 1 / 3 ) e. CC ) | 
						
							| 319 | 316 317 318 | cxpmuld |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( ( x ^c 3 ) ^c ( 1 / 3 ) ) ) | 
						
							| 320 | 27 | a1i |  |-  ( x e. QQ -> 3 e. CC ) | 
						
							| 321 | 28 | a1i |  |-  ( x e. QQ -> 3 =/= 0 ) | 
						
							| 322 | 320 321 | recidd |  |-  ( x e. QQ -> ( 3 x. ( 1 / 3 ) ) = 1 ) | 
						
							| 323 | 322 | oveq2d |  |-  ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( x ^c 1 ) ) | 
						
							| 324 | 272 | cxp1d |  |-  ( x e. QQ -> ( x ^c 1 ) = x ) | 
						
							| 325 | 323 324 | eqtrd |  |-  ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) | 
						
							| 326 | 325 | adantr |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) | 
						
							| 327 |  | cxpexp |  |-  ( ( x e. CC /\ 3 e. NN0 ) -> ( x ^c 3 ) = ( x ^ 3 ) ) | 
						
							| 328 | 272 263 327 | syl2anc |  |-  ( x e. QQ -> ( x ^c 3 ) = ( x ^ 3 ) ) | 
						
							| 329 | 328 | oveq1d |  |-  ( x e. QQ -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) | 
						
							| 330 | 329 | adantr |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) | 
						
							| 331 | 319 326 330 | 3eqtr3rd |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = x ) | 
						
							| 332 | 309 | oveq1d |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = ( 2 ^c ( 1 / 3 ) ) ) | 
						
							| 333 | 331 332 | eqtr3d |  |-  ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x = ( 2 ^c ( 1 / 3 ) ) ) | 
						
							| 334 | 304 333 | mteqand |  |-  ( x e. QQ -> ( ( x ^ 3 ) - 2 ) =/= 0 ) | 
						
							| 335 | 292 334 | eqnetrd |  |-  ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) =/= 0 ) | 
						
							| 336 | 335 | neneqd |  |-  ( x e. QQ -> -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) | 
						
							| 337 | 336 | rgen |  |-  A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 | 
						
							| 338 | 337 | a1i |  |-  ( T. -> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) | 
						
							| 339 |  | rabeq0 |  |-  ( { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) <-> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) | 
						
							| 340 | 338 339 | sylibr |  |-  ( T. -> { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) ) | 
						
							| 341 | 105 340 | eqtrd |  |-  ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = (/) ) | 
						
							| 342 | 91 92 7 4 39 96 100 341 130 | ply1dg3rt0irred |  |-  ( T. -> F e. ( Irred ` P ) ) | 
						
							| 343 |  | eqid |  |-  ( Irred ` P ) = ( Irred ` P ) | 
						
							| 344 | 343 35 | irredn0 |  |-  ( ( P e. Ring /\ F e. ( Irred ` P ) ) -> F =/= ( 0g ` P ) ) | 
						
							| 345 | 49 342 344 | syl2anc |  |-  ( T. -> F =/= ( 0g ` P ) ) | 
						
							| 346 | 1 | fveq2i |  |-  ( deg1 ` Q ) = ( deg1 ` ( CCfld |`s QQ ) ) | 
						
							| 347 | 7 346 | eqtri |  |-  D = ( deg1 ` ( CCfld |`s QQ ) ) | 
						
							| 348 |  | eqid |  |-  ( Monic1p ` ( CCfld |`s QQ ) ) = ( Monic1p ` ( CCfld |`s QQ ) ) | 
						
							| 349 |  | eqid |  |-  ( CCfld |`s QQ ) = ( CCfld |`s QQ ) | 
						
							| 350 | 349 | qrng1 |  |-  1 = ( 1r ` ( CCfld |`s QQ ) ) | 
						
							| 351 | 13 39 35 347 348 350 | ismon1p |  |-  ( F e. ( Monic1p ` ( CCfld |`s QQ ) ) <-> ( F e. ( Base ` P ) /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) ) | 
						
							| 352 | 100 345 163 351 | syl3anbrc |  |-  ( T. -> F e. ( Monic1p ` ( CCfld |`s QQ ) ) ) | 
						
							| 353 | 11 13 14 19 25 33 34 10 35 90 342 352 | irredminply |  |-  ( T. -> F = ( M ` A ) ) | 
						
							| 354 | 353 130 | jca |  |-  ( T. -> ( F = ( M ` A ) /\ ( D ` F ) = 3 ) ) | 
						
							| 355 | 354 | mptru |  |-  ( F = ( M ` A ) /\ ( D ` F ) = 3 ) |