Step |
Hyp |
Ref |
Expression |
1 |
|
2sqr3minply.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
2sqr3minply.1 |
|- .- = ( -g ` P ) |
3 |
|
2sqr3minply.2 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
4 |
|
2sqr3minply.p |
|- P = ( Poly1 ` Q ) |
5 |
|
2sqr3minply.k |
|- K = ( algSc ` P ) |
6 |
|
2sqr3minply.x |
|- X = ( var1 ` Q ) |
7 |
|
2sqr3minply.d |
|- D = ( deg1 ` Q ) |
8 |
|
2sqr3minply.f |
|- F = ( ( 3 .^ X ) .- ( K ` 2 ) ) |
9 |
|
2sqr3minply.a |
|- A = ( 2 ^c ( 1 / 3 ) ) |
10 |
|
2sqr3minply.m |
|- M = ( CCfld minPoly QQ ) |
11 |
|
eqid |
|- ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) |
12 |
1
|
fveq2i |
|- ( Poly1 ` Q ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
13 |
4 12
|
eqtri |
|- P = ( Poly1 ` ( CCfld |`s QQ ) ) |
14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
15 |
|
cndrng |
|- CCfld e. DivRing |
16 |
|
cncrng |
|- CCfld e. CRing |
17 |
|
isfld |
|- ( CCfld e. Field <-> ( CCfld e. DivRing /\ CCfld e. CRing ) ) |
18 |
15 16 17
|
mpbir2an |
|- CCfld e. Field |
19 |
18
|
a1i |
|- ( T. -> CCfld e. Field ) |
20 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
21 |
20
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
22 |
20
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
23 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
24 |
15 21 22 23
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
25 |
24
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
26 |
|
2cn |
|- 2 e. CC |
27 |
|
3cn |
|- 3 e. CC |
28 |
|
3ne0 |
|- 3 =/= 0 |
29 |
27 28
|
reccli |
|- ( 1 / 3 ) e. CC |
30 |
|
cxpcl |
|- ( ( 2 e. CC /\ ( 1 / 3 ) e. CC ) -> ( 2 ^c ( 1 / 3 ) ) e. CC ) |
31 |
26 29 30
|
mp2an |
|- ( 2 ^c ( 1 / 3 ) ) e. CC |
32 |
9 31
|
eqeltri |
|- A e. CC |
33 |
32
|
a1i |
|- ( T. -> A e. CC ) |
34 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
35 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
36 |
8
|
fveq2i |
|- ( ( CCfld evalSub1 QQ ) ` F ) = ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
37 |
36
|
fveq1i |
|- ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) |
38 |
37
|
a1i |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) ) |
39 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
40 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
41 |
16
|
a1i |
|- ( T. -> CCfld e. CRing ) |
42 |
21
|
a1i |
|- ( T. -> QQ e. ( SubRing ` CCfld ) ) |
43 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
44 |
43 39
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
45 |
1
|
qdrng |
|- Q e. DivRing |
46 |
45
|
a1i |
|- ( T. -> Q e. DivRing ) |
47 |
46
|
drngringd |
|- ( T. -> Q e. Ring ) |
48 |
4
|
ply1ring |
|- ( Q e. Ring -> P e. Ring ) |
49 |
47 48
|
syl |
|- ( T. -> P e. Ring ) |
50 |
43
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
51 |
49 50
|
syl |
|- ( T. -> ( mulGrp ` P ) e. Mnd ) |
52 |
|
3nn0 |
|- 3 e. NN0 |
53 |
52
|
a1i |
|- ( T. -> 3 e. NN0 ) |
54 |
6 4 39
|
vr1cl |
|- ( Q e. Ring -> X e. ( Base ` P ) ) |
55 |
47 54
|
syl |
|- ( T. -> X e. ( Base ` P ) ) |
56 |
44 3 51 53 55
|
mulgnn0cld |
|- ( T. -> ( 3 .^ X ) e. ( Base ` P ) ) |
57 |
47
|
mptru |
|- Q e. Ring |
58 |
4
|
ply1sca |
|- ( Q e. Ring -> Q = ( Scalar ` P ) ) |
59 |
57 58
|
ax-mp |
|- Q = ( Scalar ` P ) |
60 |
4
|
ply1lmod |
|- ( Q e. Ring -> P e. LMod ) |
61 |
47 60
|
syl |
|- ( T. -> P e. LMod ) |
62 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
63 |
5 59 49 61 62 39
|
asclf |
|- ( T. -> K : QQ --> ( Base ` P ) ) |
64 |
|
2z |
|- 2 e. ZZ |
65 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
66 |
64 65
|
mp1i |
|- ( T. -> 2 e. QQ ) |
67 |
63 66
|
ffvelcdmd |
|- ( T. -> ( K ` 2 ) e. ( Base ` P ) ) |
68 |
11 14 4 1 39 2 40 41 42 56 67 33
|
evls1subd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) ) |
69 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
70 |
11 14 4 1 39 41 42 3 69 53 55 33
|
evls1expd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) ) |
71 |
11 6 1 14 41 42
|
evls1var |
|- ( T. -> ( ( CCfld evalSub1 QQ ) ` X ) = ( _I |` CC ) ) |
72 |
71
|
fveq1d |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = ( ( _I |` CC ) ` A ) ) |
73 |
|
fvresi |
|- ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) |
74 |
32 73
|
mp1i |
|- ( T. -> ( ( _I |` CC ) ` A ) = A ) |
75 |
72 74
|
eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = A ) |
76 |
75
|
oveq2d |
|- ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
77 |
|
cnfldexp |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) |
78 |
33 53 77
|
syl2anc |
|- ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) |
79 |
70 76 78
|
3eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( A ^ 3 ) ) |
80 |
9
|
oveq1i |
|- ( A ^ 3 ) = ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) |
81 |
|
3nn |
|- 3 e. NN |
82 |
|
cxproot |
|- ( ( 2 e. CC /\ 3 e. NN ) -> ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 ) |
83 |
26 81 82
|
mp2an |
|- ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 |
84 |
80 83
|
eqtri |
|- ( A ^ 3 ) = 2 |
85 |
79 84
|
eqtrdi |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = 2 ) |
86 |
11 4 1 14 5 41 42 66 33
|
evls1scafv |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) = 2 ) |
87 |
85 86
|
oveq12d |
|- ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = ( 2 - 2 ) ) |
88 |
26
|
subidi |
|- ( 2 - 2 ) = 0 |
89 |
87 88
|
eqtrdi |
|- ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = 0 ) |
90 |
38 68 89
|
3eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = 0 ) |
91 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
92 |
|
eqid |
|- ( eval1 ` Q ) = ( eval1 ` Q ) |
93 |
|
fldsdrgfld |
|- ( ( CCfld e. Field /\ QQ e. ( SubDRing ` CCfld ) ) -> ( CCfld |`s QQ ) e. Field ) |
94 |
18 24 93
|
mp2an |
|- ( CCfld |`s QQ ) e. Field |
95 |
1 94
|
eqeltri |
|- Q e. Field |
96 |
95
|
a1i |
|- ( T. -> Q e. Field ) |
97 |
49
|
ringgrpd |
|- ( T. -> P e. Grp ) |
98 |
39 2
|
grpsubcl |
|- ( ( P e. Grp /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) |
99 |
97 56 67 98
|
syl3anc |
|- ( T. -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) |
100 |
8 99
|
eqeltrid |
|- ( T. -> F e. ( Base ` P ) ) |
101 |
96
|
fldcrngd |
|- ( T. -> Q e. CRing ) |
102 |
92 4 39 101 62 100
|
evl1fvf |
|- ( T. -> ( ( eval1 ` Q ) ` F ) : QQ --> QQ ) |
103 |
102
|
ffnd |
|- ( T. -> ( ( eval1 ` Q ) ` F ) Fn QQ ) |
104 |
|
fniniseg2 |
|- ( ( ( eval1 ` Q ) ` F ) Fn QQ -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
105 |
103 104
|
syl |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
106 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
107 |
1 106
|
ressmulr |
|- ( QQ e. ( SubRing ` CCfld ) -> x. = ( .r ` Q ) ) |
108 |
21 107
|
ax-mp |
|- x. = ( .r ` Q ) |
109 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
110 |
1 109
|
ressplusg |
|- ( QQ e. ( SubRing ` CCfld ) -> + = ( +g ` Q ) ) |
111 |
21 110
|
ax-mp |
|- + = ( +g ` Q ) |
112 |
|
eqid |
|- ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) |
113 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
114 |
8
|
fveq2i |
|- ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
115 |
114
|
a1i |
|- ( T. -> ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) |
116 |
8
|
fveq2i |
|- ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
117 |
116
|
a1i |
|- ( T. -> ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) |
118 |
|
3pos |
|- 0 < 3 |
119 |
118
|
a1i |
|- ( T. -> 0 < 3 ) |
120 |
|
2ne0 |
|- 2 =/= 0 |
121 |
120
|
a1i |
|- ( T. -> 2 =/= 0 ) |
122 |
7 4 62 5 91
|
deg1scl |
|- ( ( Q e. Ring /\ 2 e. QQ /\ 2 =/= 0 ) -> ( D ` ( K ` 2 ) ) = 0 ) |
123 |
47 66 121 122
|
syl3anc |
|- ( T. -> ( D ` ( K ` 2 ) ) = 0 ) |
124 |
|
drngnzr |
|- ( Q e. DivRing -> Q e. NzRing ) |
125 |
45 124
|
mp1i |
|- ( T. -> Q e. NzRing ) |
126 |
7 4 6 43 3
|
deg1pw |
|- ( ( Q e. NzRing /\ 3 e. NN0 ) -> ( D ` ( 3 .^ X ) ) = 3 ) |
127 |
125 53 126
|
syl2anc |
|- ( T. -> ( D ` ( 3 .^ X ) ) = 3 ) |
128 |
119 123 127
|
3brtr4d |
|- ( T. -> ( D ` ( K ` 2 ) ) < ( D ` ( 3 .^ X ) ) ) |
129 |
4 7 47 39 2 56 67 128
|
deg1sub |
|- ( T. -> ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) = ( D ` ( 3 .^ X ) ) ) |
130 |
117 129 127
|
3eqtrd |
|- ( T. -> ( D ` F ) = 3 ) |
131 |
115 130
|
fveq12d |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) ) |
132 |
|
eqid |
|- ( -g ` Q ) = ( -g ` Q ) |
133 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
134 |
47 56 67 53 133
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
135 |
|
subrgsubg |
|- ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) |
136 |
21 135
|
mp1i |
|- ( T. -> QQ e. ( SubGrp ` CCfld ) ) |
137 |
|
eqid |
|- ( coe1 ` ( 3 .^ X ) ) = ( coe1 ` ( 3 .^ X ) ) |
138 |
137 39 4 62
|
coe1fvalcl |
|- ( ( ( 3 .^ X ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) |
139 |
56 53 138
|
syl2anc |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) |
140 |
|
eqid |
|- ( coe1 ` ( K ` 2 ) ) = ( coe1 ` ( K ` 2 ) ) |
141 |
140 39 4 62
|
coe1fvalcl |
|- ( ( ( K ` 2 ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) |
142 |
67 53 141
|
syl2anc |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) |
143 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ /\ ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
144 |
136 139 142 143
|
syl3anc |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
145 |
|
iftrue |
|- ( i = 3 -> if ( i = 3 , 1 , 0 ) = 1 ) |
146 |
1
|
qrng1 |
|- 1 = ( 1r ` Q ) |
147 |
4 6 3 47 53 91 146
|
coe1mon |
|- ( T. -> ( coe1 ` ( 3 .^ X ) ) = ( i e. NN0 |-> if ( i = 3 , 1 , 0 ) ) ) |
148 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
149 |
145 147 53 148
|
fvmptd4 |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) = 1 ) |
150 |
28
|
neii |
|- -. 3 = 0 |
151 |
|
eqeq1 |
|- ( i = 3 -> ( i = 0 <-> 3 = 0 ) ) |
152 |
150 151
|
mtbiri |
|- ( i = 3 -> -. i = 0 ) |
153 |
152
|
iffalsed |
|- ( i = 3 -> if ( i = 0 , 2 , 0 ) = 0 ) |
154 |
4 5 62 91
|
coe1scl |
|- ( ( Q e. Ring /\ 2 e. QQ ) -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) |
155 |
47 66 154
|
syl2anc |
|- ( T. -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) |
156 |
|
0nn0 |
|- 0 e. NN0 |
157 |
156
|
a1i |
|- ( T. -> 0 e. NN0 ) |
158 |
153 155 53 157
|
fvmptd4 |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) = 0 ) |
159 |
149 158
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( 1 - 0 ) ) |
160 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
161 |
159 160
|
eqtrdi |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) |
162 |
144 161
|
eqtr3d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) |
163 |
131 134 162
|
3eqtrd |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) |
164 |
130
|
fveq2d |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` 3 ) ) |
165 |
163 164
|
eqtr3d |
|- ( T. -> 1 = ( ( coe1 ` F ) ` 3 ) ) |
166 |
165
|
mptru |
|- 1 = ( ( coe1 ` F ) ` 3 ) |
167 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 2 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) ) |
168 |
|
2nn0 |
|- 2 e. NN0 |
169 |
168
|
a1i |
|- ( T. -> 2 e. NN0 ) |
170 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) |
171 |
47 56 67 169 170
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) |
172 |
|
2re |
|- 2 e. RR |
173 |
|
2lt3 |
|- 2 < 3 |
174 |
172 173
|
ltneii |
|- 2 =/= 3 |
175 |
|
neeq1 |
|- ( i = 2 -> ( i =/= 3 <-> 2 =/= 3 ) ) |
176 |
174 175
|
mpbiri |
|- ( i = 2 -> i =/= 3 ) |
177 |
176
|
adantl |
|- ( ( T. /\ i = 2 ) -> i =/= 3 ) |
178 |
177
|
neneqd |
|- ( ( T. /\ i = 2 ) -> -. i = 3 ) |
179 |
178
|
iffalsed |
|- ( ( T. /\ i = 2 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
180 |
147 179 169 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) = 0 ) |
181 |
|
neeq1 |
|- ( i = 2 -> ( i =/= 0 <-> 2 =/= 0 ) ) |
182 |
120 181
|
mpbiri |
|- ( i = 2 -> i =/= 0 ) |
183 |
182
|
neneqd |
|- ( i = 2 -> -. i = 0 ) |
184 |
183
|
adantl |
|- ( ( T. /\ i = 2 ) -> -. i = 0 ) |
185 |
184
|
iffalsed |
|- ( ( T. /\ i = 2 ) -> if ( i = 0 , 2 , 0 ) = 0 ) |
186 |
155 185 169 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 2 ) = 0 ) |
187 |
180 186
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) = ( 0 ( -g ` Q ) 0 ) ) |
188 |
171 187
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( 0 ( -g ` Q ) 0 ) ) |
189 |
158 142
|
eqeltrrd |
|- ( T. -> 0 e. QQ ) |
190 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 0 e. QQ ) -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) |
191 |
136 189 189 190
|
syl3anc |
|- ( T. -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) |
192 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
193 |
191 192
|
eqtr3di |
|- ( T. -> ( 0 ( -g ` Q ) 0 ) = 0 ) |
194 |
167 188 193
|
3eqtrrd |
|- ( T. -> 0 = ( ( coe1 ` F ) ` 2 ) ) |
195 |
194
|
mptru |
|- 0 = ( ( coe1 ` F ) ` 2 ) |
196 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 1 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) ) |
197 |
|
1nn0 |
|- 1 e. NN0 |
198 |
197
|
a1i |
|- ( T. -> 1 e. NN0 ) |
199 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) |
200 |
47 56 67 198 199
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) |
201 |
|
1re |
|- 1 e. RR |
202 |
|
1lt3 |
|- 1 < 3 |
203 |
201 202
|
ltneii |
|- 1 =/= 3 |
204 |
|
neeq1 |
|- ( i = 1 -> ( i =/= 3 <-> 1 =/= 3 ) ) |
205 |
203 204
|
mpbiri |
|- ( i = 1 -> i =/= 3 ) |
206 |
205
|
neneqd |
|- ( i = 1 -> -. i = 3 ) |
207 |
206
|
adantl |
|- ( ( T. /\ i = 1 ) -> -. i = 3 ) |
208 |
207
|
iffalsed |
|- ( ( T. /\ i = 1 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
209 |
147 208 198 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) = 0 ) |
210 |
|
ax-1ne0 |
|- 1 =/= 0 |
211 |
|
neeq1 |
|- ( i = 1 -> ( i =/= 0 <-> 1 =/= 0 ) ) |
212 |
210 211
|
mpbiri |
|- ( i = 1 -> i =/= 0 ) |
213 |
212
|
neneqd |
|- ( i = 1 -> -. i = 0 ) |
214 |
213
|
adantl |
|- ( ( T. /\ i = 1 ) -> -. i = 0 ) |
215 |
214
|
iffalsed |
|- ( ( T. /\ i = 1 ) -> if ( i = 0 , 2 , 0 ) = 0 ) |
216 |
155 215 198 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 1 ) = 0 ) |
217 |
209 216
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) = ( 0 ( -g ` Q ) 0 ) ) |
218 |
200 217
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( 0 ( -g ` Q ) 0 ) ) |
219 |
196 218 193
|
3eqtrrd |
|- ( T. -> 0 = ( ( coe1 ` F ) ` 1 ) ) |
220 |
219
|
mptru |
|- 0 = ( ( coe1 ` F ) ` 1 ) |
221 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 0 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) ) |
222 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) |
223 |
47 56 67 157 222
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) |
224 |
28
|
necomi |
|- 0 =/= 3 |
225 |
|
neeq1 |
|- ( i = 0 -> ( i =/= 3 <-> 0 =/= 3 ) ) |
226 |
224 225
|
mpbiri |
|- ( i = 0 -> i =/= 3 ) |
227 |
226
|
neneqd |
|- ( i = 0 -> -. i = 3 ) |
228 |
227
|
adantl |
|- ( ( T. /\ i = 0 ) -> -. i = 3 ) |
229 |
228
|
iffalsed |
|- ( ( T. /\ i = 0 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
230 |
147 229 157 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) = 0 ) |
231 |
|
simpr |
|- ( ( T. /\ i = 0 ) -> i = 0 ) |
232 |
231
|
iftrued |
|- ( ( T. /\ i = 0 ) -> if ( i = 0 , 2 , 0 ) = 2 ) |
233 |
155 232 157 169
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 0 ) = 2 ) |
234 |
230 233
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) = ( 0 ( -g ` Q ) 2 ) ) |
235 |
223 234
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( 0 ( -g ` Q ) 2 ) ) |
236 |
|
df-neg |
|- -u 2 = ( 0 - 2 ) |
237 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 2 e. QQ ) -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) |
238 |
136 189 66 237
|
syl3anc |
|- ( T. -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) |
239 |
236 238
|
eqtr2id |
|- ( T. -> ( 0 ( -g ` Q ) 2 ) = -u 2 ) |
240 |
221 235 239
|
3eqtrrd |
|- ( T. -> -u 2 = ( ( coe1 ` F ) ` 0 ) ) |
241 |
240
|
mptru |
|- -u 2 = ( ( coe1 ` F ) ` 0 ) |
242 |
95
|
a1i |
|- ( x e. QQ -> Q e. Field ) |
243 |
242
|
fldcrngd |
|- ( x e. QQ -> Q e. CRing ) |
244 |
100
|
mptru |
|- F e. ( Base ` P ) |
245 |
244
|
a1i |
|- ( x e. QQ -> F e. ( Base ` P ) ) |
246 |
130
|
mptru |
|- ( D ` F ) = 3 |
247 |
246
|
a1i |
|- ( x e. QQ -> ( D ` F ) = 3 ) |
248 |
|
id |
|- ( x e. QQ -> x e. QQ ) |
249 |
4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248
|
evl1deg3 |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) ) |
250 |
|
qsscn |
|- QQ C_ CC |
251 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s QQ ) = ( ( mulGrp ` CCfld ) |`s QQ ) |
252 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
253 |
252 14
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
254 |
251 253
|
ressbas2 |
|- ( QQ C_ CC -> QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) ) |
255 |
250 254
|
ax-mp |
|- QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) |
256 |
1 252
|
mgpress |
|- ( ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) ) |
257 |
15 21 256
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) |
258 |
257
|
fveq2i |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) = ( Base ` ( mulGrp ` Q ) ) |
259 |
255 258
|
eqtri |
|- QQ = ( Base ` ( mulGrp ` Q ) ) |
260 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
261 |
260
|
ringmgp |
|- ( Q e. Ring -> ( mulGrp ` Q ) e. Mnd ) |
262 |
57 261
|
mp1i |
|- ( x e. QQ -> ( mulGrp ` Q ) e. Mnd ) |
263 |
52
|
a1i |
|- ( x e. QQ -> 3 e. NN0 ) |
264 |
259 112 262 263 248
|
mulgnn0cld |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) |
265 |
250 264
|
sselid |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) |
266 |
265
|
mullidd |
|- ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) |
267 |
257
|
eqcomi |
|- ( mulGrp ` Q ) = ( ( mulGrp ` CCfld ) |`s QQ ) |
268 |
250 253
|
sseqtri |
|- QQ C_ ( Base ` ( mulGrp ` CCfld ) ) |
269 |
268
|
a1i |
|- ( x e. QQ -> QQ C_ ( Base ` ( mulGrp ` CCfld ) ) ) |
270 |
81
|
a1i |
|- ( x e. QQ -> 3 e. NN ) |
271 |
267 269 248 270
|
ressmulgnnd |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) ) |
272 |
|
qcn |
|- ( x e. QQ -> x e. CC ) |
273 |
|
cnfldexp |
|- ( ( x e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) |
274 |
272 263 273
|
syl2anc |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) |
275 |
266 271 274
|
3eqtrd |
|- ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( x ^ 3 ) ) |
276 |
168
|
a1i |
|- ( x e. QQ -> 2 e. NN0 ) |
277 |
259 112 262 276 248
|
mulgnn0cld |
|- ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) |
278 |
250 277
|
sselid |
|- ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) |
279 |
278
|
mul02d |
|- ( x e. QQ -> ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) = 0 ) |
280 |
275 279
|
oveq12d |
|- ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( ( x ^ 3 ) + 0 ) ) |
281 |
272 263
|
expcld |
|- ( x e. QQ -> ( x ^ 3 ) e. CC ) |
282 |
281
|
addridd |
|- ( x e. QQ -> ( ( x ^ 3 ) + 0 ) = ( x ^ 3 ) ) |
283 |
280 282
|
eqtrd |
|- ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( x ^ 3 ) ) |
284 |
272
|
mul02d |
|- ( x e. QQ -> ( 0 x. x ) = 0 ) |
285 |
284
|
oveq1d |
|- ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = ( 0 + -u 2 ) ) |
286 |
26
|
a1i |
|- ( x e. QQ -> 2 e. CC ) |
287 |
286
|
negcld |
|- ( x e. QQ -> -u 2 e. CC ) |
288 |
287
|
addlidd |
|- ( x e. QQ -> ( 0 + -u 2 ) = -u 2 ) |
289 |
285 288
|
eqtrd |
|- ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = -u 2 ) |
290 |
283 289
|
oveq12d |
|- ( x e. QQ -> ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) = ( ( x ^ 3 ) + -u 2 ) ) |
291 |
281 286
|
negsubd |
|- ( x e. QQ -> ( ( x ^ 3 ) + -u 2 ) = ( ( x ^ 3 ) - 2 ) ) |
292 |
249 290 291
|
3eqtrd |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( x ^ 3 ) - 2 ) ) |
293 |
|
2prm |
|- 2 e. Prime |
294 |
|
3z |
|- 3 e. ZZ |
295 |
|
3re |
|- 3 e. RR |
296 |
172 295 173
|
ltleii |
|- 2 <_ 3 |
297 |
64
|
eluz1i |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) |
298 |
294 296 297
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
299 |
|
rtprmirr |
|- ( ( 2 e. Prime /\ 3 e. ( ZZ>= ` 2 ) ) -> ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) ) |
300 |
293 298 299
|
mp2an |
|- ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) |
301 |
|
eldifn |
|- ( ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) -> -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) |
302 |
300 301
|
ax-mp |
|- -. ( 2 ^c ( 1 / 3 ) ) e. QQ |
303 |
|
nelne2 |
|- ( ( x e. QQ /\ -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) -> x =/= ( 2 ^c ( 1 / 3 ) ) ) |
304 |
302 303
|
mpan2 |
|- ( x e. QQ -> x =/= ( 2 ^c ( 1 / 3 ) ) ) |
305 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
306 |
305
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR ) |
307 |
|
2pos |
|- 0 < 2 |
308 |
281 286
|
subeq0ad |
|- ( x e. QQ -> ( ( ( x ^ 3 ) - 2 ) = 0 <-> ( x ^ 3 ) = 2 ) ) |
309 |
308
|
biimpa |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^ 3 ) = 2 ) |
310 |
307 309
|
breqtrrid |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < ( x ^ 3 ) ) |
311 |
81
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. NN ) |
312 |
|
n2dvds3 |
|- -. 2 || 3 |
313 |
312
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> -. 2 || 3 ) |
314 |
306 311 313
|
expgt0b |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 0 < x <-> 0 < ( x ^ 3 ) ) ) |
315 |
310 314
|
mpbird |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < x ) |
316 |
306 315
|
elrpd |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR+ ) |
317 |
295
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. RR ) |
318 |
29
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 1 / 3 ) e. CC ) |
319 |
316 317 318
|
cxpmuld |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( ( x ^c 3 ) ^c ( 1 / 3 ) ) ) |
320 |
27
|
a1i |
|- ( x e. QQ -> 3 e. CC ) |
321 |
28
|
a1i |
|- ( x e. QQ -> 3 =/= 0 ) |
322 |
320 321
|
recidd |
|- ( x e. QQ -> ( 3 x. ( 1 / 3 ) ) = 1 ) |
323 |
322
|
oveq2d |
|- ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( x ^c 1 ) ) |
324 |
272
|
cxp1d |
|- ( x e. QQ -> ( x ^c 1 ) = x ) |
325 |
323 324
|
eqtrd |
|- ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) |
326 |
325
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) |
327 |
|
cxpexp |
|- ( ( x e. CC /\ 3 e. NN0 ) -> ( x ^c 3 ) = ( x ^ 3 ) ) |
328 |
272 263 327
|
syl2anc |
|- ( x e. QQ -> ( x ^c 3 ) = ( x ^ 3 ) ) |
329 |
328
|
oveq1d |
|- ( x e. QQ -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) |
330 |
329
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) |
331 |
319 326 330
|
3eqtr3rd |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = x ) |
332 |
309
|
oveq1d |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = ( 2 ^c ( 1 / 3 ) ) ) |
333 |
331 332
|
eqtr3d |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x = ( 2 ^c ( 1 / 3 ) ) ) |
334 |
304 333
|
mteqand |
|- ( x e. QQ -> ( ( x ^ 3 ) - 2 ) =/= 0 ) |
335 |
292 334
|
eqnetrd |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) =/= 0 ) |
336 |
335
|
neneqd |
|- ( x e. QQ -> -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
337 |
336
|
rgen |
|- A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 |
338 |
337
|
a1i |
|- ( T. -> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
339 |
|
rabeq0 |
|- ( { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) <-> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
340 |
338 339
|
sylibr |
|- ( T. -> { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) ) |
341 |
105 340
|
eqtrd |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = (/) ) |
342 |
91 92 7 4 39 96 100 341 130
|
ply1dg3rt0irred |
|- ( T. -> F e. ( Irred ` P ) ) |
343 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
344 |
343 35
|
irredn0 |
|- ( ( P e. Ring /\ F e. ( Irred ` P ) ) -> F =/= ( 0g ` P ) ) |
345 |
49 342 344
|
syl2anc |
|- ( T. -> F =/= ( 0g ` P ) ) |
346 |
1
|
fveq2i |
|- ( deg1 ` Q ) = ( deg1 ` ( CCfld |`s QQ ) ) |
347 |
7 346
|
eqtri |
|- D = ( deg1 ` ( CCfld |`s QQ ) ) |
348 |
|
eqid |
|- ( Monic1p ` ( CCfld |`s QQ ) ) = ( Monic1p ` ( CCfld |`s QQ ) ) |
349 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
350 |
349
|
qrng1 |
|- 1 = ( 1r ` ( CCfld |`s QQ ) ) |
351 |
13 39 35 347 348 350
|
ismon1p |
|- ( F e. ( Monic1p ` ( CCfld |`s QQ ) ) <-> ( F e. ( Base ` P ) /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) ) |
352 |
100 345 163 351
|
syl3anbrc |
|- ( T. -> F e. ( Monic1p ` ( CCfld |`s QQ ) ) ) |
353 |
11 13 14 19 25 33 34 10 35 90 342 352
|
irredminply |
|- ( T. -> F = ( M ` A ) ) |
354 |
353 130
|
jca |
|- ( T. -> ( F = ( M ` A ) /\ ( D ` F ) = 3 ) ) |
355 |
354
|
mptru |
|- ( F = ( M ` A ) /\ ( D ` F ) = 3 ) |