| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqr3minply.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
2sqr3minply.1 |
|- .- = ( -g ` P ) |
| 3 |
|
2sqr3minply.2 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 4 |
|
2sqr3minply.p |
|- P = ( Poly1 ` Q ) |
| 5 |
|
2sqr3minply.k |
|- K = ( algSc ` P ) |
| 6 |
|
2sqr3minply.x |
|- X = ( var1 ` Q ) |
| 7 |
|
2sqr3minply.d |
|- D = ( deg1 ` Q ) |
| 8 |
|
2sqr3minply.f |
|- F = ( ( 3 .^ X ) .- ( K ` 2 ) ) |
| 9 |
|
2sqr3minply.a |
|- A = ( 2 ^c ( 1 / 3 ) ) |
| 10 |
|
2sqr3minply.m |
|- M = ( CCfld minPoly QQ ) |
| 11 |
|
eqid |
|- ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) |
| 12 |
1
|
fveq2i |
|- ( Poly1 ` Q ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 13 |
4 12
|
eqtri |
|- P = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 15 |
|
cndrng |
|- CCfld e. DivRing |
| 16 |
|
cncrng |
|- CCfld e. CRing |
| 17 |
|
isfld |
|- ( CCfld e. Field <-> ( CCfld e. DivRing /\ CCfld e. CRing ) ) |
| 18 |
15 16 17
|
mpbir2an |
|- CCfld e. Field |
| 19 |
18
|
a1i |
|- ( T. -> CCfld e. Field ) |
| 20 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 21 |
20
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 22 |
20
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
| 23 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 24 |
15 21 22 23
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 25 |
24
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
| 26 |
|
2cn |
|- 2 e. CC |
| 27 |
|
3cn |
|- 3 e. CC |
| 28 |
|
3ne0 |
|- 3 =/= 0 |
| 29 |
27 28
|
reccli |
|- ( 1 / 3 ) e. CC |
| 30 |
|
cxpcl |
|- ( ( 2 e. CC /\ ( 1 / 3 ) e. CC ) -> ( 2 ^c ( 1 / 3 ) ) e. CC ) |
| 31 |
26 29 30
|
mp2an |
|- ( 2 ^c ( 1 / 3 ) ) e. CC |
| 32 |
9 31
|
eqeltri |
|- A e. CC |
| 33 |
32
|
a1i |
|- ( T. -> A e. CC ) |
| 34 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 35 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 36 |
8
|
fveq2i |
|- ( ( CCfld evalSub1 QQ ) ` F ) = ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
| 37 |
36
|
fveq1i |
|- ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) |
| 38 |
37
|
a1i |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) ) |
| 39 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 40 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
| 41 |
16
|
a1i |
|- ( T. -> CCfld e. CRing ) |
| 42 |
21
|
a1i |
|- ( T. -> QQ e. ( SubRing ` CCfld ) ) |
| 43 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 44 |
43 39
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 45 |
1
|
qdrng |
|- Q e. DivRing |
| 46 |
45
|
a1i |
|- ( T. -> Q e. DivRing ) |
| 47 |
46
|
drngringd |
|- ( T. -> Q e. Ring ) |
| 48 |
4
|
ply1ring |
|- ( Q e. Ring -> P e. Ring ) |
| 49 |
47 48
|
syl |
|- ( T. -> P e. Ring ) |
| 50 |
43
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 51 |
49 50
|
syl |
|- ( T. -> ( mulGrp ` P ) e. Mnd ) |
| 52 |
|
3nn0 |
|- 3 e. NN0 |
| 53 |
52
|
a1i |
|- ( T. -> 3 e. NN0 ) |
| 54 |
6 4 39
|
vr1cl |
|- ( Q e. Ring -> X e. ( Base ` P ) ) |
| 55 |
47 54
|
syl |
|- ( T. -> X e. ( Base ` P ) ) |
| 56 |
44 3 51 53 55
|
mulgnn0cld |
|- ( T. -> ( 3 .^ X ) e. ( Base ` P ) ) |
| 57 |
47
|
mptru |
|- Q e. Ring |
| 58 |
4
|
ply1sca |
|- ( Q e. Ring -> Q = ( Scalar ` P ) ) |
| 59 |
57 58
|
ax-mp |
|- Q = ( Scalar ` P ) |
| 60 |
4
|
ply1lmod |
|- ( Q e. Ring -> P e. LMod ) |
| 61 |
47 60
|
syl |
|- ( T. -> P e. LMod ) |
| 62 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 63 |
5 59 49 61 62 39
|
asclf |
|- ( T. -> K : QQ --> ( Base ` P ) ) |
| 64 |
|
2z |
|- 2 e. ZZ |
| 65 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
| 66 |
64 65
|
mp1i |
|- ( T. -> 2 e. QQ ) |
| 67 |
63 66
|
ffvelcdmd |
|- ( T. -> ( K ` 2 ) e. ( Base ` P ) ) |
| 68 |
11 14 4 1 39 2 40 41 42 56 67 33
|
evls1subd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` A ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) ) |
| 69 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
| 70 |
11 14 4 1 39 41 42 3 69 53 55 33
|
evls1expd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) ) |
| 71 |
11 6 1 14 41 42
|
evls1var |
|- ( T. -> ( ( CCfld evalSub1 QQ ) ` X ) = ( _I |` CC ) ) |
| 72 |
71
|
fveq1d |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = ( ( _I |` CC ) ` A ) ) |
| 73 |
|
fvresi |
|- ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) |
| 74 |
32 73
|
mp1i |
|- ( T. -> ( ( _I |` CC ) ` A ) = A ) |
| 75 |
72 74
|
eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) = A ) |
| 76 |
75
|
oveq2d |
|- ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` A ) ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
| 77 |
|
cnfldexp |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) |
| 78 |
33 53 77
|
syl2anc |
|- ( T. -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 3 ) ) |
| 79 |
70 76 78
|
3eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = ( A ^ 3 ) ) |
| 80 |
9
|
oveq1i |
|- ( A ^ 3 ) = ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) |
| 81 |
|
3nn |
|- 3 e. NN |
| 82 |
|
cxproot |
|- ( ( 2 e. CC /\ 3 e. NN ) -> ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 ) |
| 83 |
26 81 82
|
mp2an |
|- ( ( 2 ^c ( 1 / 3 ) ) ^ 3 ) = 2 |
| 84 |
80 83
|
eqtri |
|- ( A ^ 3 ) = 2 |
| 85 |
79 84
|
eqtrdi |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) = 2 ) |
| 86 |
11 4 1 14 5 41 42 66 33
|
evls1scafv |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) = 2 ) |
| 87 |
85 86
|
oveq12d |
|- ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = ( 2 - 2 ) ) |
| 88 |
26
|
subidi |
|- ( 2 - 2 ) = 0 |
| 89 |
87 88
|
eqtrdi |
|- ( T. -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` A ) - ( ( ( CCfld evalSub1 QQ ) ` ( K ` 2 ) ) ` A ) ) = 0 ) |
| 90 |
38 68 89
|
3eqtrd |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = 0 ) |
| 91 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 92 |
|
eqid |
|- ( eval1 ` Q ) = ( eval1 ` Q ) |
| 93 |
|
fldsdrgfld |
|- ( ( CCfld e. Field /\ QQ e. ( SubDRing ` CCfld ) ) -> ( CCfld |`s QQ ) e. Field ) |
| 94 |
18 24 93
|
mp2an |
|- ( CCfld |`s QQ ) e. Field |
| 95 |
1 94
|
eqeltri |
|- Q e. Field |
| 96 |
95
|
a1i |
|- ( T. -> Q e. Field ) |
| 97 |
49
|
ringgrpd |
|- ( T. -> P e. Grp ) |
| 98 |
39 2
|
grpsubcl |
|- ( ( P e. Grp /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) |
| 99 |
97 56 67 98
|
syl3anc |
|- ( T. -> ( ( 3 .^ X ) .- ( K ` 2 ) ) e. ( Base ` P ) ) |
| 100 |
8 99
|
eqeltrid |
|- ( T. -> F e. ( Base ` P ) ) |
| 101 |
96
|
fldcrngd |
|- ( T. -> Q e. CRing ) |
| 102 |
92 4 39 101 62 100
|
evl1fvf |
|- ( T. -> ( ( eval1 ` Q ) ` F ) : QQ --> QQ ) |
| 103 |
102
|
ffnd |
|- ( T. -> ( ( eval1 ` Q ) ` F ) Fn QQ ) |
| 104 |
|
fniniseg2 |
|- ( ( ( eval1 ` Q ) ` F ) Fn QQ -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
| 105 |
103 104
|
syl |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
| 106 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 107 |
1 106
|
ressmulr |
|- ( QQ e. ( SubRing ` CCfld ) -> x. = ( .r ` Q ) ) |
| 108 |
21 107
|
ax-mp |
|- x. = ( .r ` Q ) |
| 109 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 110 |
1 109
|
ressplusg |
|- ( QQ e. ( SubRing ` CCfld ) -> + = ( +g ` Q ) ) |
| 111 |
21 110
|
ax-mp |
|- + = ( +g ` Q ) |
| 112 |
|
eqid |
|- ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) |
| 113 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 114 |
8
|
fveq2i |
|- ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
| 115 |
114
|
a1i |
|- ( T. -> ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) |
| 116 |
8
|
fveq2i |
|- ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) |
| 117 |
116
|
a1i |
|- ( T. -> ( D ` F ) = ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ) |
| 118 |
|
3pos |
|- 0 < 3 |
| 119 |
118
|
a1i |
|- ( T. -> 0 < 3 ) |
| 120 |
|
2ne0 |
|- 2 =/= 0 |
| 121 |
120
|
a1i |
|- ( T. -> 2 =/= 0 ) |
| 122 |
7 4 62 5 91
|
deg1scl |
|- ( ( Q e. Ring /\ 2 e. QQ /\ 2 =/= 0 ) -> ( D ` ( K ` 2 ) ) = 0 ) |
| 123 |
47 66 121 122
|
syl3anc |
|- ( T. -> ( D ` ( K ` 2 ) ) = 0 ) |
| 124 |
|
drngnzr |
|- ( Q e. DivRing -> Q e. NzRing ) |
| 125 |
45 124
|
mp1i |
|- ( T. -> Q e. NzRing ) |
| 126 |
7 4 6 43 3
|
deg1pw |
|- ( ( Q e. NzRing /\ 3 e. NN0 ) -> ( D ` ( 3 .^ X ) ) = 3 ) |
| 127 |
125 53 126
|
syl2anc |
|- ( T. -> ( D ` ( 3 .^ X ) ) = 3 ) |
| 128 |
119 123 127
|
3brtr4d |
|- ( T. -> ( D ` ( K ` 2 ) ) < ( D ` ( 3 .^ X ) ) ) |
| 129 |
4 7 47 39 2 56 67 128
|
deg1sub |
|- ( T. -> ( D ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) = ( D ` ( 3 .^ X ) ) ) |
| 130 |
117 129 127
|
3eqtrd |
|- ( T. -> ( D ` F ) = 3 ) |
| 131 |
115 130
|
fveq12d |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) ) |
| 132 |
|
eqid |
|- ( -g ` Q ) = ( -g ` Q ) |
| 133 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
| 134 |
47 56 67 53 133
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
| 135 |
|
subrgsubg |
|- ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) |
| 136 |
21 135
|
mp1i |
|- ( T. -> QQ e. ( SubGrp ` CCfld ) ) |
| 137 |
|
eqid |
|- ( coe1 ` ( 3 .^ X ) ) = ( coe1 ` ( 3 .^ X ) ) |
| 138 |
137 39 4 62
|
coe1fvalcl |
|- ( ( ( 3 .^ X ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) |
| 139 |
56 53 138
|
syl2anc |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ ) |
| 140 |
|
eqid |
|- ( coe1 ` ( K ` 2 ) ) = ( coe1 ` ( K ` 2 ) ) |
| 141 |
140 39 4 62
|
coe1fvalcl |
|- ( ( ( K ` 2 ) e. ( Base ` P ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) |
| 142 |
67 53 141
|
syl2anc |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) |
| 143 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) e. QQ /\ ( ( coe1 ` ( K ` 2 ) ) ` 3 ) e. QQ ) -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
| 144 |
136 139 142 143
|
syl3anc |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) ) |
| 145 |
|
iftrue |
|- ( i = 3 -> if ( i = 3 , 1 , 0 ) = 1 ) |
| 146 |
1
|
qrng1 |
|- 1 = ( 1r ` Q ) |
| 147 |
4 6 3 47 53 91 146
|
coe1mon |
|- ( T. -> ( coe1 ` ( 3 .^ X ) ) = ( i e. NN0 |-> if ( i = 3 , 1 , 0 ) ) ) |
| 148 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 149 |
145 147 53 148
|
fvmptd4 |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) = 1 ) |
| 150 |
28
|
neii |
|- -. 3 = 0 |
| 151 |
|
eqeq1 |
|- ( i = 3 -> ( i = 0 <-> 3 = 0 ) ) |
| 152 |
150 151
|
mtbiri |
|- ( i = 3 -> -. i = 0 ) |
| 153 |
152
|
iffalsed |
|- ( i = 3 -> if ( i = 0 , 2 , 0 ) = 0 ) |
| 154 |
4 5 62 91
|
coe1scl |
|- ( ( Q e. Ring /\ 2 e. QQ ) -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) |
| 155 |
47 66 154
|
syl2anc |
|- ( T. -> ( coe1 ` ( K ` 2 ) ) = ( i e. NN0 |-> if ( i = 0 , 2 , 0 ) ) ) |
| 156 |
|
0nn0 |
|- 0 e. NN0 |
| 157 |
156
|
a1i |
|- ( T. -> 0 e. NN0 ) |
| 158 |
153 155 53 157
|
fvmptd4 |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 3 ) = 0 ) |
| 159 |
149 158
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = ( 1 - 0 ) ) |
| 160 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 161 |
159 160
|
eqtrdi |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) - ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) |
| 162 |
144 161
|
eqtr3d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 3 ) ) = 1 ) |
| 163 |
131 134 162
|
3eqtrd |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) |
| 164 |
130
|
fveq2d |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` 3 ) ) |
| 165 |
163 164
|
eqtr3d |
|- ( T. -> 1 = ( ( coe1 ` F ) ` 3 ) ) |
| 166 |
165
|
mptru |
|- 1 = ( ( coe1 ` F ) ` 3 ) |
| 167 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 2 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) ) |
| 168 |
|
2nn0 |
|- 2 e. NN0 |
| 169 |
168
|
a1i |
|- ( T. -> 2 e. NN0 ) |
| 170 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 2 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) |
| 171 |
47 56 67 169 170
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) ) |
| 172 |
|
2re |
|- 2 e. RR |
| 173 |
|
2lt3 |
|- 2 < 3 |
| 174 |
172 173
|
ltneii |
|- 2 =/= 3 |
| 175 |
|
neeq1 |
|- ( i = 2 -> ( i =/= 3 <-> 2 =/= 3 ) ) |
| 176 |
174 175
|
mpbiri |
|- ( i = 2 -> i =/= 3 ) |
| 177 |
176
|
adantl |
|- ( ( T. /\ i = 2 ) -> i =/= 3 ) |
| 178 |
177
|
neneqd |
|- ( ( T. /\ i = 2 ) -> -. i = 3 ) |
| 179 |
178
|
iffalsed |
|- ( ( T. /\ i = 2 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
| 180 |
147 179 169 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) = 0 ) |
| 181 |
|
neeq1 |
|- ( i = 2 -> ( i =/= 0 <-> 2 =/= 0 ) ) |
| 182 |
120 181
|
mpbiri |
|- ( i = 2 -> i =/= 0 ) |
| 183 |
182
|
neneqd |
|- ( i = 2 -> -. i = 0 ) |
| 184 |
183
|
adantl |
|- ( ( T. /\ i = 2 ) -> -. i = 0 ) |
| 185 |
184
|
iffalsed |
|- ( ( T. /\ i = 2 ) -> if ( i = 0 , 2 , 0 ) = 0 ) |
| 186 |
155 185 169 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 2 ) = 0 ) |
| 187 |
180 186
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 2 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 2 ) ) = ( 0 ( -g ` Q ) 0 ) ) |
| 188 |
171 187
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 2 ) = ( 0 ( -g ` Q ) 0 ) ) |
| 189 |
158 142
|
eqeltrrd |
|- ( T. -> 0 e. QQ ) |
| 190 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 0 e. QQ ) -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) |
| 191 |
136 189 189 190
|
syl3anc |
|- ( T. -> ( 0 - 0 ) = ( 0 ( -g ` Q ) 0 ) ) |
| 192 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 193 |
191 192
|
eqtr3di |
|- ( T. -> ( 0 ( -g ` Q ) 0 ) = 0 ) |
| 194 |
167 188 193
|
3eqtrrd |
|- ( T. -> 0 = ( ( coe1 ` F ) ` 2 ) ) |
| 195 |
194
|
mptru |
|- 0 = ( ( coe1 ` F ) ` 2 ) |
| 196 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 1 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) ) |
| 197 |
|
1nn0 |
|- 1 e. NN0 |
| 198 |
197
|
a1i |
|- ( T. -> 1 e. NN0 ) |
| 199 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) |
| 200 |
47 56 67 198 199
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) ) |
| 201 |
|
1re |
|- 1 e. RR |
| 202 |
|
1lt3 |
|- 1 < 3 |
| 203 |
201 202
|
ltneii |
|- 1 =/= 3 |
| 204 |
|
neeq1 |
|- ( i = 1 -> ( i =/= 3 <-> 1 =/= 3 ) ) |
| 205 |
203 204
|
mpbiri |
|- ( i = 1 -> i =/= 3 ) |
| 206 |
205
|
neneqd |
|- ( i = 1 -> -. i = 3 ) |
| 207 |
206
|
adantl |
|- ( ( T. /\ i = 1 ) -> -. i = 3 ) |
| 208 |
207
|
iffalsed |
|- ( ( T. /\ i = 1 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
| 209 |
147 208 198 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) = 0 ) |
| 210 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 211 |
|
neeq1 |
|- ( i = 1 -> ( i =/= 0 <-> 1 =/= 0 ) ) |
| 212 |
210 211
|
mpbiri |
|- ( i = 1 -> i =/= 0 ) |
| 213 |
212
|
neneqd |
|- ( i = 1 -> -. i = 0 ) |
| 214 |
213
|
adantl |
|- ( ( T. /\ i = 1 ) -> -. i = 0 ) |
| 215 |
214
|
iffalsed |
|- ( ( T. /\ i = 1 ) -> if ( i = 0 , 2 , 0 ) = 0 ) |
| 216 |
155 215 198 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 1 ) = 0 ) |
| 217 |
209 216
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 1 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 1 ) ) = ( 0 ( -g ` Q ) 0 ) ) |
| 218 |
200 217
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 1 ) = ( 0 ( -g ` Q ) 0 ) ) |
| 219 |
196 218 193
|
3eqtrrd |
|- ( T. -> 0 = ( ( coe1 ` F ) ` 1 ) ) |
| 220 |
219
|
mptru |
|- 0 = ( ( coe1 ` F ) ` 1 ) |
| 221 |
115
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 0 ) = ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) ) |
| 222 |
4 39 2 132
|
coe1subfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( K ` 2 ) e. ( Base ` P ) ) /\ 0 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) |
| 223 |
47 56 67 157 222
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) ) |
| 224 |
28
|
necomi |
|- 0 =/= 3 |
| 225 |
|
neeq1 |
|- ( i = 0 -> ( i =/= 3 <-> 0 =/= 3 ) ) |
| 226 |
224 225
|
mpbiri |
|- ( i = 0 -> i =/= 3 ) |
| 227 |
226
|
neneqd |
|- ( i = 0 -> -. i = 3 ) |
| 228 |
227
|
adantl |
|- ( ( T. /\ i = 0 ) -> -. i = 3 ) |
| 229 |
228
|
iffalsed |
|- ( ( T. /\ i = 0 ) -> if ( i = 3 , 1 , 0 ) = 0 ) |
| 230 |
147 229 157 157
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) = 0 ) |
| 231 |
|
simpr |
|- ( ( T. /\ i = 0 ) -> i = 0 ) |
| 232 |
231
|
iftrued |
|- ( ( T. /\ i = 0 ) -> if ( i = 0 , 2 , 0 ) = 2 ) |
| 233 |
155 232 157 169
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 2 ) ) ` 0 ) = 2 ) |
| 234 |
230 233
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 0 ) ( -g ` Q ) ( ( coe1 ` ( K ` 2 ) ) ` 0 ) ) = ( 0 ( -g ` Q ) 2 ) ) |
| 235 |
223 234
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .- ( K ` 2 ) ) ) ` 0 ) = ( 0 ( -g ` Q ) 2 ) ) |
| 236 |
|
df-neg |
|- -u 2 = ( 0 - 2 ) |
| 237 |
40 1 132
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ 0 e. QQ /\ 2 e. QQ ) -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) |
| 238 |
136 189 66 237
|
syl3anc |
|- ( T. -> ( 0 - 2 ) = ( 0 ( -g ` Q ) 2 ) ) |
| 239 |
236 238
|
eqtr2id |
|- ( T. -> ( 0 ( -g ` Q ) 2 ) = -u 2 ) |
| 240 |
221 235 239
|
3eqtrrd |
|- ( T. -> -u 2 = ( ( coe1 ` F ) ` 0 ) ) |
| 241 |
240
|
mptru |
|- -u 2 = ( ( coe1 ` F ) ` 0 ) |
| 242 |
95
|
a1i |
|- ( x e. QQ -> Q e. Field ) |
| 243 |
242
|
fldcrngd |
|- ( x e. QQ -> Q e. CRing ) |
| 244 |
100
|
mptru |
|- F e. ( Base ` P ) |
| 245 |
244
|
a1i |
|- ( x e. QQ -> F e. ( Base ` P ) ) |
| 246 |
130
|
mptru |
|- ( D ` F ) = 3 |
| 247 |
246
|
a1i |
|- ( x e. QQ -> ( D ` F ) = 3 ) |
| 248 |
|
id |
|- ( x e. QQ -> x e. QQ ) |
| 249 |
4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248
|
evl1deg3 |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) ) |
| 250 |
|
qsscn |
|- QQ C_ CC |
| 251 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s QQ ) = ( ( mulGrp ` CCfld ) |`s QQ ) |
| 252 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 253 |
252 14
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 254 |
251 253
|
ressbas2 |
|- ( QQ C_ CC -> QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) ) |
| 255 |
250 254
|
ax-mp |
|- QQ = ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) |
| 256 |
1 252
|
mgpress |
|- ( ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) ) |
| 257 |
15 21 256
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s QQ ) = ( mulGrp ` Q ) |
| 258 |
257
|
fveq2i |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s QQ ) ) = ( Base ` ( mulGrp ` Q ) ) |
| 259 |
255 258
|
eqtri |
|- QQ = ( Base ` ( mulGrp ` Q ) ) |
| 260 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
| 261 |
260
|
ringmgp |
|- ( Q e. Ring -> ( mulGrp ` Q ) e. Mnd ) |
| 262 |
57 261
|
mp1i |
|- ( x e. QQ -> ( mulGrp ` Q ) e. Mnd ) |
| 263 |
52
|
a1i |
|- ( x e. QQ -> 3 e. NN0 ) |
| 264 |
259 112 262 263 248
|
mulgnn0cld |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) |
| 265 |
250 264
|
sselid |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) |
| 266 |
265
|
mullidd |
|- ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) |
| 267 |
257
|
eqcomi |
|- ( mulGrp ` Q ) = ( ( mulGrp ` CCfld ) |`s QQ ) |
| 268 |
250 253
|
sseqtri |
|- QQ C_ ( Base ` ( mulGrp ` CCfld ) ) |
| 269 |
268
|
a1i |
|- ( x e. QQ -> QQ C_ ( Base ` ( mulGrp ` CCfld ) ) ) |
| 270 |
81
|
a1i |
|- ( x e. QQ -> 3 e. NN ) |
| 271 |
267 269 248 270
|
ressmulgnnd |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` Q ) ) x ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) ) |
| 272 |
|
qcn |
|- ( x e. QQ -> x e. CC ) |
| 273 |
|
cnfldexp |
|- ( ( x e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) |
| 274 |
272 263 273
|
syl2anc |
|- ( x e. QQ -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) x ) = ( x ^ 3 ) ) |
| 275 |
266 271 274
|
3eqtrd |
|- ( x e. QQ -> ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) = ( x ^ 3 ) ) |
| 276 |
168
|
a1i |
|- ( x e. QQ -> 2 e. NN0 ) |
| 277 |
259 112 262 276 248
|
mulgnn0cld |
|- ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. QQ ) |
| 278 |
250 277
|
sselid |
|- ( x e. QQ -> ( 2 ( .g ` ( mulGrp ` Q ) ) x ) e. CC ) |
| 279 |
278
|
mul02d |
|- ( x e. QQ -> ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) = 0 ) |
| 280 |
275 279
|
oveq12d |
|- ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( ( x ^ 3 ) + 0 ) ) |
| 281 |
272 263
|
expcld |
|- ( x e. QQ -> ( x ^ 3 ) e. CC ) |
| 282 |
281
|
addridd |
|- ( x e. QQ -> ( ( x ^ 3 ) + 0 ) = ( x ^ 3 ) ) |
| 283 |
280 282
|
eqtrd |
|- ( x e. QQ -> ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) = ( x ^ 3 ) ) |
| 284 |
272
|
mul02d |
|- ( x e. QQ -> ( 0 x. x ) = 0 ) |
| 285 |
284
|
oveq1d |
|- ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = ( 0 + -u 2 ) ) |
| 286 |
26
|
a1i |
|- ( x e. QQ -> 2 e. CC ) |
| 287 |
286
|
negcld |
|- ( x e. QQ -> -u 2 e. CC ) |
| 288 |
287
|
addlidd |
|- ( x e. QQ -> ( 0 + -u 2 ) = -u 2 ) |
| 289 |
285 288
|
eqtrd |
|- ( x e. QQ -> ( ( 0 x. x ) + -u 2 ) = -u 2 ) |
| 290 |
283 289
|
oveq12d |
|- ( x e. QQ -> ( ( ( 1 x. ( 3 ( .g ` ( mulGrp ` Q ) ) x ) ) + ( 0 x. ( 2 ( .g ` ( mulGrp ` Q ) ) x ) ) ) + ( ( 0 x. x ) + -u 2 ) ) = ( ( x ^ 3 ) + -u 2 ) ) |
| 291 |
281 286
|
negsubd |
|- ( x e. QQ -> ( ( x ^ 3 ) + -u 2 ) = ( ( x ^ 3 ) - 2 ) ) |
| 292 |
249 290 291
|
3eqtrd |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( x ^ 3 ) - 2 ) ) |
| 293 |
|
2prm |
|- 2 e. Prime |
| 294 |
|
3z |
|- 3 e. ZZ |
| 295 |
|
3re |
|- 3 e. RR |
| 296 |
172 295 173
|
ltleii |
|- 2 <_ 3 |
| 297 |
64
|
eluz1i |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) |
| 298 |
294 296 297
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
| 299 |
|
rtprmirr |
|- ( ( 2 e. Prime /\ 3 e. ( ZZ>= ` 2 ) ) -> ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) ) |
| 300 |
293 298 299
|
mp2an |
|- ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) |
| 301 |
|
eldifn |
|- ( ( 2 ^c ( 1 / 3 ) ) e. ( RR \ QQ ) -> -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) |
| 302 |
300 301
|
ax-mp |
|- -. ( 2 ^c ( 1 / 3 ) ) e. QQ |
| 303 |
|
nelne2 |
|- ( ( x e. QQ /\ -. ( 2 ^c ( 1 / 3 ) ) e. QQ ) -> x =/= ( 2 ^c ( 1 / 3 ) ) ) |
| 304 |
302 303
|
mpan2 |
|- ( x e. QQ -> x =/= ( 2 ^c ( 1 / 3 ) ) ) |
| 305 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
| 306 |
305
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR ) |
| 307 |
|
2pos |
|- 0 < 2 |
| 308 |
281 286
|
subeq0ad |
|- ( x e. QQ -> ( ( ( x ^ 3 ) - 2 ) = 0 <-> ( x ^ 3 ) = 2 ) ) |
| 309 |
308
|
biimpa |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^ 3 ) = 2 ) |
| 310 |
307 309
|
breqtrrid |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < ( x ^ 3 ) ) |
| 311 |
81
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. NN ) |
| 312 |
|
n2dvds3 |
|- -. 2 || 3 |
| 313 |
312
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> -. 2 || 3 ) |
| 314 |
306 311 313
|
expgt0b |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 0 < x <-> 0 < ( x ^ 3 ) ) ) |
| 315 |
310 314
|
mpbird |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 0 < x ) |
| 316 |
306 315
|
elrpd |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x e. RR+ ) |
| 317 |
295
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> 3 e. RR ) |
| 318 |
29
|
a1i |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( 1 / 3 ) e. CC ) |
| 319 |
316 317 318
|
cxpmuld |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( ( x ^c 3 ) ^c ( 1 / 3 ) ) ) |
| 320 |
27
|
a1i |
|- ( x e. QQ -> 3 e. CC ) |
| 321 |
28
|
a1i |
|- ( x e. QQ -> 3 =/= 0 ) |
| 322 |
320 321
|
recidd |
|- ( x e. QQ -> ( 3 x. ( 1 / 3 ) ) = 1 ) |
| 323 |
322
|
oveq2d |
|- ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = ( x ^c 1 ) ) |
| 324 |
272
|
cxp1d |
|- ( x e. QQ -> ( x ^c 1 ) = x ) |
| 325 |
323 324
|
eqtrd |
|- ( x e. QQ -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) |
| 326 |
325
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( x ^c ( 3 x. ( 1 / 3 ) ) ) = x ) |
| 327 |
|
cxpexp |
|- ( ( x e. CC /\ 3 e. NN0 ) -> ( x ^c 3 ) = ( x ^ 3 ) ) |
| 328 |
272 263 327
|
syl2anc |
|- ( x e. QQ -> ( x ^c 3 ) = ( x ^ 3 ) ) |
| 329 |
328
|
oveq1d |
|- ( x e. QQ -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) |
| 330 |
329
|
adantr |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^c 3 ) ^c ( 1 / 3 ) ) = ( ( x ^ 3 ) ^c ( 1 / 3 ) ) ) |
| 331 |
319 326 330
|
3eqtr3rd |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = x ) |
| 332 |
309
|
oveq1d |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> ( ( x ^ 3 ) ^c ( 1 / 3 ) ) = ( 2 ^c ( 1 / 3 ) ) ) |
| 333 |
331 332
|
eqtr3d |
|- ( ( x e. QQ /\ ( ( x ^ 3 ) - 2 ) = 0 ) -> x = ( 2 ^c ( 1 / 3 ) ) ) |
| 334 |
304 333
|
mteqand |
|- ( x e. QQ -> ( ( x ^ 3 ) - 2 ) =/= 0 ) |
| 335 |
292 334
|
eqnetrd |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) =/= 0 ) |
| 336 |
335
|
neneqd |
|- ( x e. QQ -> -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 337 |
336
|
rgen |
|- A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 |
| 338 |
337
|
a1i |
|- ( T. -> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 339 |
|
rabeq0 |
|- ( { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) <-> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 340 |
338 339
|
sylibr |
|- ( T. -> { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) ) |
| 341 |
105 340
|
eqtrd |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = (/) ) |
| 342 |
91 92 7 4 39 96 100 341 130
|
ply1dg3rt0irred |
|- ( T. -> F e. ( Irred ` P ) ) |
| 343 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
| 344 |
343 35
|
irredn0 |
|- ( ( P e. Ring /\ F e. ( Irred ` P ) ) -> F =/= ( 0g ` P ) ) |
| 345 |
49 342 344
|
syl2anc |
|- ( T. -> F =/= ( 0g ` P ) ) |
| 346 |
1
|
fveq2i |
|- ( deg1 ` Q ) = ( deg1 ` ( CCfld |`s QQ ) ) |
| 347 |
7 346
|
eqtri |
|- D = ( deg1 ` ( CCfld |`s QQ ) ) |
| 348 |
|
eqid |
|- ( Monic1p ` ( CCfld |`s QQ ) ) = ( Monic1p ` ( CCfld |`s QQ ) ) |
| 349 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 350 |
349
|
qrng1 |
|- 1 = ( 1r ` ( CCfld |`s QQ ) ) |
| 351 |
13 39 35 347 348 350
|
ismon1p |
|- ( F e. ( Monic1p ` ( CCfld |`s QQ ) ) <-> ( F e. ( Base ` P ) /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) ) |
| 352 |
100 345 163 351
|
syl3anbrc |
|- ( T. -> F e. ( Monic1p ` ( CCfld |`s QQ ) ) ) |
| 353 |
11 13 14 19 25 33 34 10 35 90 342 352
|
irredminply |
|- ( T. -> F = ( M ` A ) ) |
| 354 |
353 130
|
jca |
|- ( T. -> ( F = ( M ` A ) /\ ( D ` F ) = 3 ) ) |
| 355 |
354
|
mptru |
|- ( F = ( M ` A ) /\ ( D ` F ) = 3 ) |