Step |
Hyp |
Ref |
Expression |
1 |
|
2sqr3minply.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
2sqr3minply.1 |
⊢ − = ( -g ‘ 𝑃 ) |
3 |
|
2sqr3minply.2 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
4 |
|
2sqr3minply.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑄 ) |
5 |
|
2sqr3minply.k |
⊢ 𝐾 = ( algSc ‘ 𝑃 ) |
6 |
|
2sqr3minply.x |
⊢ 𝑋 = ( var1 ‘ 𝑄 ) |
7 |
|
2sqr3minply.d |
⊢ 𝐷 = ( deg1 ‘ 𝑄 ) |
8 |
|
2sqr3minply.f |
⊢ 𝐹 = ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) |
9 |
|
2sqr3minply.a |
⊢ 𝐴 = ( 2 ↑𝑐 ( 1 / 3 ) ) |
10 |
|
2sqr3minply.m |
⊢ 𝑀 = ( ℂfld minPoly ℚ ) |
11 |
|
eqid |
⊢ ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ ) |
12 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝑄 ) = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
13 |
4 12
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
14 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
15 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
16 |
|
cncrng |
⊢ ℂfld ∈ CRing |
17 |
|
isfld |
⊢ ( ℂfld ∈ Field ↔ ( ℂfld ∈ DivRing ∧ ℂfld ∈ CRing ) ) |
18 |
15 16 17
|
mpbir2an |
⊢ ℂfld ∈ Field |
19 |
18
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Field ) |
20 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
21 |
20
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
22 |
20
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
23 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
24 |
15 21 22 23
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
25 |
24
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
26 |
|
2cn |
⊢ 2 ∈ ℂ |
27 |
|
3cn |
⊢ 3 ∈ ℂ |
28 |
|
3ne0 |
⊢ 3 ≠ 0 |
29 |
27 28
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
30 |
|
cxpcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
31 |
26 29 30
|
mp2an |
⊢ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ |
32 |
9 31
|
eqeltri |
⊢ 𝐴 ∈ ℂ |
33 |
32
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
34 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
36 |
8
|
fveq2i |
⊢ ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) = ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) |
37 |
36
|
fveq1i |
⊢ ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 ) |
38 |
37
|
a1i |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
40 |
|
cnfldsub |
⊢ − = ( -g ‘ ℂfld ) |
41 |
16
|
a1i |
⊢ ( ⊤ → ℂfld ∈ CRing ) |
42 |
21
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubRing ‘ ℂfld ) ) |
43 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
44 |
43 39
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
45 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
46 |
45
|
a1i |
⊢ ( ⊤ → 𝑄 ∈ DivRing ) |
47 |
46
|
drngringd |
⊢ ( ⊤ → 𝑄 ∈ Ring ) |
48 |
4
|
ply1ring |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ Ring ) |
49 |
47 48
|
syl |
⊢ ( ⊤ → 𝑃 ∈ Ring ) |
50 |
43
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
51 |
49 50
|
syl |
⊢ ( ⊤ → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
52 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
53 |
52
|
a1i |
⊢ ( ⊤ → 3 ∈ ℕ0 ) |
54 |
6 4 39
|
vr1cl |
⊢ ( 𝑄 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
55 |
47 54
|
syl |
⊢ ( ⊤ → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
56 |
44 3 51 53 55
|
mulgnn0cld |
⊢ ( ⊤ → ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
57 |
47
|
mptru |
⊢ 𝑄 ∈ Ring |
58 |
4
|
ply1sca |
⊢ ( 𝑄 ∈ Ring → 𝑄 = ( Scalar ‘ 𝑃 ) ) |
59 |
57 58
|
ax-mp |
⊢ 𝑄 = ( Scalar ‘ 𝑃 ) |
60 |
4
|
ply1lmod |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ LMod ) |
61 |
47 60
|
syl |
⊢ ( ⊤ → 𝑃 ∈ LMod ) |
62 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
63 |
5 59 49 61 62 39
|
asclf |
⊢ ( ⊤ → 𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) ) |
64 |
|
2z |
⊢ 2 ∈ ℤ |
65 |
|
zq |
⊢ ( 2 ∈ ℤ → 2 ∈ ℚ ) |
66 |
64 65
|
mp1i |
⊢ ( ⊤ → 2 ∈ ℚ ) |
67 |
63 66
|
ffvelcdmd |
⊢ ( ⊤ → ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) |
68 |
11 14 4 1 39 2 40 41 42 56 67 33
|
evls1subd |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) − ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) ) ) |
69 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
70 |
11 14 4 1 39 41 42 3 69 53 55 33
|
evls1expd |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
71 |
11 6 1 14 41 42
|
evls1var |
⊢ ( ⊤ → ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) = ( I ↾ ℂ ) ) |
72 |
71
|
fveq1d |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) = ( ( I ↾ ℂ ) ‘ 𝐴 ) ) |
73 |
|
fvresi |
⊢ ( 𝐴 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝐴 ) = 𝐴 ) |
74 |
32 73
|
mp1i |
⊢ ( ⊤ → ( ( I ↾ ℂ ) ‘ 𝐴 ) = 𝐴 ) |
75 |
72 74
|
eqtrd |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) = 𝐴 ) |
76 |
75
|
oveq2d |
⊢ ( ⊤ → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
77 |
|
cnfldexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 3 ) ) |
78 |
33 53 77
|
syl2anc |
⊢ ( ⊤ → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 3 ) ) |
79 |
70 76 78
|
3eqtrd |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ↑ 3 ) ) |
80 |
9
|
oveq1i |
⊢ ( 𝐴 ↑ 3 ) = ( ( 2 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) |
81 |
|
3nn |
⊢ 3 ∈ ℕ |
82 |
|
cxproot |
⊢ ( ( 2 ∈ ℂ ∧ 3 ∈ ℕ ) → ( ( 2 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = 2 ) |
83 |
26 81 82
|
mp2an |
⊢ ( ( 2 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = 2 |
84 |
80 83
|
eqtri |
⊢ ( 𝐴 ↑ 3 ) = 2 |
85 |
79 84
|
eqtrdi |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) = 2 ) |
86 |
11 4 1 14 5 41 42 66 33
|
evls1scafv |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) = 2 ) |
87 |
85 86
|
oveq12d |
⊢ ( ⊤ → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) − ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) ) = ( 2 − 2 ) ) |
88 |
26
|
subidi |
⊢ ( 2 − 2 ) = 0 |
89 |
87 88
|
eqtrdi |
⊢ ( ⊤ → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝐴 ) − ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) ) = 0 ) |
90 |
38 68 89
|
3eqtrd |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = 0 ) |
91 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
92 |
|
eqid |
⊢ ( eval1 ‘ 𝑄 ) = ( eval1 ‘ 𝑄 ) |
93 |
|
fldsdrgfld |
⊢ ( ( ℂfld ∈ Field ∧ ℚ ∈ ( SubDRing ‘ ℂfld ) ) → ( ℂfld ↾s ℚ ) ∈ Field ) |
94 |
18 24 93
|
mp2an |
⊢ ( ℂfld ↾s ℚ ) ∈ Field |
95 |
1 94
|
eqeltri |
⊢ 𝑄 ∈ Field |
96 |
95
|
a1i |
⊢ ( ⊤ → 𝑄 ∈ Field ) |
97 |
49
|
ringgrpd |
⊢ ( ⊤ → 𝑃 ∈ Grp ) |
98 |
39 2
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ∈ ( Base ‘ 𝑃 ) ) |
99 |
97 56 67 98
|
syl3anc |
⊢ ( ⊤ → ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ∈ ( Base ‘ 𝑃 ) ) |
100 |
8 99
|
eqeltrid |
⊢ ( ⊤ → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
101 |
96
|
fldcrngd |
⊢ ( ⊤ → 𝑄 ∈ CRing ) |
102 |
92 4 39 101 62 100
|
evl1fvf |
⊢ ( ⊤ → ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) : ℚ ⟶ ℚ ) |
103 |
102
|
ffnd |
⊢ ( ⊤ → ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) Fn ℚ ) |
104 |
|
fniniseg2 |
⊢ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) Fn ℚ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
105 |
103 104
|
syl |
⊢ ( ⊤ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
106 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
107 |
1 106
|
ressmulr |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → · = ( .r ‘ 𝑄 ) ) |
108 |
21 107
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
109 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
110 |
1 109
|
ressplusg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → + = ( +g ‘ 𝑄 ) ) |
111 |
21 110
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
112 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
113 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
114 |
8
|
fveq2i |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) |
115 |
114
|
a1i |
⊢ ( ⊤ → ( coe1 ‘ 𝐹 ) = ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ) |
116 |
8
|
fveq2i |
⊢ ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) |
117 |
116
|
a1i |
⊢ ( ⊤ → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ) |
118 |
|
3pos |
⊢ 0 < 3 |
119 |
118
|
a1i |
⊢ ( ⊤ → 0 < 3 ) |
120 |
|
2ne0 |
⊢ 2 ≠ 0 |
121 |
120
|
a1i |
⊢ ( ⊤ → 2 ≠ 0 ) |
122 |
7 4 62 5 91
|
deg1scl |
⊢ ( ( 𝑄 ∈ Ring ∧ 2 ∈ ℚ ∧ 2 ≠ 0 ) → ( 𝐷 ‘ ( 𝐾 ‘ 2 ) ) = 0 ) |
123 |
47 66 121 122
|
syl3anc |
⊢ ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 2 ) ) = 0 ) |
124 |
|
drngnzr |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ NzRing ) |
125 |
45 124
|
mp1i |
⊢ ( ⊤ → 𝑄 ∈ NzRing ) |
126 |
7 4 6 43 3
|
deg1pw |
⊢ ( ( 𝑄 ∈ NzRing ∧ 3 ∈ ℕ0 ) → ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) = 3 ) |
127 |
125 53 126
|
syl2anc |
⊢ ( ⊤ → ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) = 3 ) |
128 |
119 123 127
|
3brtr4d |
⊢ ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 2 ) ) < ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) ) |
129 |
4 7 47 39 2 56 67 128
|
deg1sub |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) = ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) ) |
130 |
117 129 127
|
3eqtrd |
⊢ ( ⊤ → ( 𝐷 ‘ 𝐹 ) = 3 ) |
131 |
115 130
|
fveq12d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 3 ) ) |
132 |
|
eqid |
⊢ ( -g ‘ 𝑄 ) = ( -g ‘ 𝑄 ) |
133 |
4 39 2 132
|
coe1subfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) |
134 |
47 56 67 53 133
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) |
135 |
|
subrgsubg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → ℚ ∈ ( SubGrp ‘ ℂfld ) ) |
136 |
21 135
|
mp1i |
⊢ ( ⊤ → ℚ ∈ ( SubGrp ‘ ℂfld ) ) |
137 |
|
eqid |
⊢ ( coe1 ‘ ( 3 ↑ 𝑋 ) ) = ( coe1 ‘ ( 3 ↑ 𝑋 ) ) |
138 |
137 39 4 62
|
coe1fvalcl |
⊢ ( ( ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ∈ ℚ ) |
139 |
56 53 138
|
syl2anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ∈ ℚ ) |
140 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐾 ‘ 2 ) ) = ( coe1 ‘ ( 𝐾 ‘ 2 ) ) |
141 |
140 39 4 62
|
coe1fvalcl |
⊢ ( ( ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ∈ ℚ ) |
142 |
67 53 141
|
syl2anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ∈ ℚ ) |
143 |
40 1 132
|
subgsub |
⊢ ( ( ℚ ∈ ( SubGrp ‘ ℂfld ) ∧ ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ∈ ℚ ∧ ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ∈ ℚ ) → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) − ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) |
144 |
136 139 142 143
|
syl3anc |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) − ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) |
145 |
|
iftrue |
⊢ ( 𝑖 = 3 → if ( 𝑖 = 3 , 1 , 0 ) = 1 ) |
146 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
147 |
4 6 3 47 53 91 146
|
coe1mon |
⊢ ( ⊤ → ( coe1 ‘ ( 3 ↑ 𝑋 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 3 , 1 , 0 ) ) ) |
148 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
149 |
145 147 53 148
|
fvmptd4 |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) = 1 ) |
150 |
28
|
neii |
⊢ ¬ 3 = 0 |
151 |
|
eqeq1 |
⊢ ( 𝑖 = 3 → ( 𝑖 = 0 ↔ 3 = 0 ) ) |
152 |
150 151
|
mtbiri |
⊢ ( 𝑖 = 3 → ¬ 𝑖 = 0 ) |
153 |
152
|
iffalsed |
⊢ ( 𝑖 = 3 → if ( 𝑖 = 0 , 2 , 0 ) = 0 ) |
154 |
4 5 62 91
|
coe1scl |
⊢ ( ( 𝑄 ∈ Ring ∧ 2 ∈ ℚ ) → ( coe1 ‘ ( 𝐾 ‘ 2 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 2 , 0 ) ) ) |
155 |
47 66 154
|
syl2anc |
⊢ ( ⊤ → ( coe1 ‘ ( 𝐾 ‘ 2 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 2 , 0 ) ) ) |
156 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
157 |
156
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
158 |
153 155 53 157
|
fvmptd4 |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) = 0 ) |
159 |
149 158
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) − ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) = ( 1 − 0 ) ) |
160 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
161 |
159 160
|
eqtrdi |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) − ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) = 1 ) |
162 |
144 161
|
eqtr3d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) = 1 ) |
163 |
131 134 162
|
3eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = 1 ) |
164 |
130
|
fveq2d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 3 ) ) |
165 |
163 164
|
eqtr3d |
⊢ ( ⊤ → 1 = ( ( coe1 ‘ 𝐹 ) ‘ 3 ) ) |
166 |
165
|
mptru |
⊢ 1 = ( ( coe1 ‘ 𝐹 ) ‘ 3 ) |
167 |
115
|
fveq1d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ 2 ) = ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 2 ) ) |
168 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
169 |
168
|
a1i |
⊢ ( ⊤ → 2 ∈ ℕ0 ) |
170 |
4 39 2 132
|
coe1subfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 2 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) ) ) |
171 |
47 56 67 169 170
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) ) ) |
172 |
|
2re |
⊢ 2 ∈ ℝ |
173 |
|
2lt3 |
⊢ 2 < 3 |
174 |
172 173
|
ltneii |
⊢ 2 ≠ 3 |
175 |
|
neeq1 |
⊢ ( 𝑖 = 2 → ( 𝑖 ≠ 3 ↔ 2 ≠ 3 ) ) |
176 |
174 175
|
mpbiri |
⊢ ( 𝑖 = 2 → 𝑖 ≠ 3 ) |
177 |
176
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 = 2 ) → 𝑖 ≠ 3 ) |
178 |
177
|
neneqd |
⊢ ( ( ⊤ ∧ 𝑖 = 2 ) → ¬ 𝑖 = 3 ) |
179 |
178
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 2 ) → if ( 𝑖 = 3 , 1 , 0 ) = 0 ) |
180 |
147 179 169 157
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 2 ) = 0 ) |
181 |
|
neeq1 |
⊢ ( 𝑖 = 2 → ( 𝑖 ≠ 0 ↔ 2 ≠ 0 ) ) |
182 |
120 181
|
mpbiri |
⊢ ( 𝑖 = 2 → 𝑖 ≠ 0 ) |
183 |
182
|
neneqd |
⊢ ( 𝑖 = 2 → ¬ 𝑖 = 0 ) |
184 |
183
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 = 2 ) → ¬ 𝑖 = 0 ) |
185 |
184
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 2 ) → if ( 𝑖 = 0 , 2 , 0 ) = 0 ) |
186 |
155 185 169 157
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) = 0 ) |
187 |
180 186
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
188 |
171 187
|
eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 2 ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
189 |
158 142
|
eqeltrrd |
⊢ ( ⊤ → 0 ∈ ℚ ) |
190 |
40 1 132
|
subgsub |
⊢ ( ( ℚ ∈ ( SubGrp ‘ ℂfld ) ∧ 0 ∈ ℚ ∧ 0 ∈ ℚ ) → ( 0 − 0 ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
191 |
136 189 189 190
|
syl3anc |
⊢ ( ⊤ → ( 0 − 0 ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
192 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
193 |
191 192
|
eqtr3di |
⊢ ( ⊤ → ( 0 ( -g ‘ 𝑄 ) 0 ) = 0 ) |
194 |
167 188 193
|
3eqtrrd |
⊢ ( ⊤ → 0 = ( ( coe1 ‘ 𝐹 ) ‘ 2 ) ) |
195 |
194
|
mptru |
⊢ 0 = ( ( coe1 ‘ 𝐹 ) ‘ 2 ) |
196 |
115
|
fveq1d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ 1 ) = ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 1 ) ) |
197 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
198 |
197
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
199 |
4 39 2 132
|
coe1subfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) ) ) |
200 |
47 56 67 198 199
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) ) ) |
201 |
|
1re |
⊢ 1 ∈ ℝ |
202 |
|
1lt3 |
⊢ 1 < 3 |
203 |
201 202
|
ltneii |
⊢ 1 ≠ 3 |
204 |
|
neeq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 ≠ 3 ↔ 1 ≠ 3 ) ) |
205 |
203 204
|
mpbiri |
⊢ ( 𝑖 = 1 → 𝑖 ≠ 3 ) |
206 |
205
|
neneqd |
⊢ ( 𝑖 = 1 → ¬ 𝑖 = 3 ) |
207 |
206
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 = 1 ) → ¬ 𝑖 = 3 ) |
208 |
207
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 1 ) → if ( 𝑖 = 3 , 1 , 0 ) = 0 ) |
209 |
147 208 198 157
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 1 ) = 0 ) |
210 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
211 |
|
neeq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 ≠ 0 ↔ 1 ≠ 0 ) ) |
212 |
210 211
|
mpbiri |
⊢ ( 𝑖 = 1 → 𝑖 ≠ 0 ) |
213 |
212
|
neneqd |
⊢ ( 𝑖 = 1 → ¬ 𝑖 = 0 ) |
214 |
213
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 = 1 ) → ¬ 𝑖 = 0 ) |
215 |
214
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 1 ) → if ( 𝑖 = 0 , 2 , 0 ) = 0 ) |
216 |
155 215 198 157
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) = 0 ) |
217 |
209 216
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
218 |
200 217
|
eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 1 ) = ( 0 ( -g ‘ 𝑄 ) 0 ) ) |
219 |
196 218 193
|
3eqtrrd |
⊢ ( ⊤ → 0 = ( ( coe1 ‘ 𝐹 ) ‘ 1 ) ) |
220 |
219
|
mptru |
⊢ 0 = ( ( coe1 ‘ 𝐹 ) ‘ 1 ) |
221 |
115
|
fveq1d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 0 ) ) |
222 |
4 39 2 132
|
coe1subfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 2 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) ) ) |
223 |
47 56 67 157 222
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) ) ) |
224 |
28
|
necomi |
⊢ 0 ≠ 3 |
225 |
|
neeq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ≠ 3 ↔ 0 ≠ 3 ) ) |
226 |
224 225
|
mpbiri |
⊢ ( 𝑖 = 0 → 𝑖 ≠ 3 ) |
227 |
226
|
neneqd |
⊢ ( 𝑖 = 0 → ¬ 𝑖 = 3 ) |
228 |
227
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 = 0 ) → ¬ 𝑖 = 3 ) |
229 |
228
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 0 ) → if ( 𝑖 = 3 , 1 , 0 ) = 0 ) |
230 |
147 229 157 157
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 0 ) = 0 ) |
231 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑖 = 0 ) → 𝑖 = 0 ) |
232 |
231
|
iftrued |
⊢ ( ( ⊤ ∧ 𝑖 = 0 ) → if ( 𝑖 = 0 , 2 , 0 ) = 2 ) |
233 |
155 232 157 169
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) = 2 ) |
234 |
230 233
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) ) = ( 0 ( -g ‘ 𝑄 ) 2 ) ) |
235 |
223 234
|
eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) − ( 𝐾 ‘ 2 ) ) ) ‘ 0 ) = ( 0 ( -g ‘ 𝑄 ) 2 ) ) |
236 |
|
df-neg |
⊢ - 2 = ( 0 − 2 ) |
237 |
40 1 132
|
subgsub |
⊢ ( ( ℚ ∈ ( SubGrp ‘ ℂfld ) ∧ 0 ∈ ℚ ∧ 2 ∈ ℚ ) → ( 0 − 2 ) = ( 0 ( -g ‘ 𝑄 ) 2 ) ) |
238 |
136 189 66 237
|
syl3anc |
⊢ ( ⊤ → ( 0 − 2 ) = ( 0 ( -g ‘ 𝑄 ) 2 ) ) |
239 |
236 238
|
eqtr2id |
⊢ ( ⊤ → ( 0 ( -g ‘ 𝑄 ) 2 ) = - 2 ) |
240 |
221 235 239
|
3eqtrrd |
⊢ ( ⊤ → - 2 = ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) |
241 |
240
|
mptru |
⊢ - 2 = ( ( coe1 ‘ 𝐹 ) ‘ 0 ) |
242 |
95
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 𝑄 ∈ Field ) |
243 |
242
|
fldcrngd |
⊢ ( 𝑥 ∈ ℚ → 𝑄 ∈ CRing ) |
244 |
100
|
mptru |
⊢ 𝐹 ∈ ( Base ‘ 𝑃 ) |
245 |
244
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
246 |
130
|
mptru |
⊢ ( 𝐷 ‘ 𝐹 ) = 3 |
247 |
246
|
a1i |
⊢ ( 𝑥 ∈ ℚ → ( 𝐷 ‘ 𝐹 ) = 3 ) |
248 |
|
id |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℚ ) |
249 |
4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248
|
evl1deg3 |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) + ( 0 · ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) ) + ( ( 0 · 𝑥 ) + - 2 ) ) ) |
250 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
251 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) |
252 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
253 |
252 14
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
254 |
251 253
|
ressbas2 |
⊢ ( ℚ ⊆ ℂ → ℚ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) ) ) |
255 |
250 254
|
ax-mp |
⊢ ℚ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) ) |
256 |
1 252
|
mgpress |
⊢ ( ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) = ( mulGrp ‘ 𝑄 ) ) |
257 |
15 21 256
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) = ( mulGrp ‘ 𝑄 ) |
258 |
257
|
fveq2i |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
259 |
255 258
|
eqtri |
⊢ ℚ = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
260 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
261 |
260
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
262 |
57 261
|
mp1i |
⊢ ( 𝑥 ∈ ℚ → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
263 |
52
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 3 ∈ ℕ0 ) |
264 |
259 112 262 263 248
|
mulgnn0cld |
⊢ ( 𝑥 ∈ ℚ → ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ∈ ℚ ) |
265 |
250 264
|
sselid |
⊢ ( 𝑥 ∈ ℚ → ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ∈ ℂ ) |
266 |
265
|
mullidd |
⊢ ( 𝑥 ∈ ℚ → ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) = ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) |
267 |
257
|
eqcomi |
⊢ ( mulGrp ‘ 𝑄 ) = ( ( mulGrp ‘ ℂfld ) ↾s ℚ ) |
268 |
250 253
|
sseqtri |
⊢ ℚ ⊆ ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
269 |
268
|
a1i |
⊢ ( 𝑥 ∈ ℚ → ℚ ⊆ ( Base ‘ ( mulGrp ‘ ℂfld ) ) ) |
270 |
81
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 3 ∈ ℕ ) |
271 |
267 269 248 270
|
ressmulgnnd |
⊢ ( 𝑥 ∈ ℚ → ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 ) ) |
272 |
|
qcn |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ ) |
273 |
|
cnfldexp |
⊢ ( ( 𝑥 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 ) = ( 𝑥 ↑ 3 ) ) |
274 |
272 263 273
|
syl2anc |
⊢ ( 𝑥 ∈ ℚ → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 ) = ( 𝑥 ↑ 3 ) ) |
275 |
266 271 274
|
3eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) = ( 𝑥 ↑ 3 ) ) |
276 |
168
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 2 ∈ ℕ0 ) |
277 |
259 112 262 276 248
|
mulgnn0cld |
⊢ ( 𝑥 ∈ ℚ → ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ∈ ℚ ) |
278 |
250 277
|
sselid |
⊢ ( 𝑥 ∈ ℚ → ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ∈ ℂ ) |
279 |
278
|
mul02d |
⊢ ( 𝑥 ∈ ℚ → ( 0 · ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) = 0 ) |
280 |
275 279
|
oveq12d |
⊢ ( 𝑥 ∈ ℚ → ( ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) + ( 0 · ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) ) = ( ( 𝑥 ↑ 3 ) + 0 ) ) |
281 |
272 263
|
expcld |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 ↑ 3 ) ∈ ℂ ) |
282 |
281
|
addridd |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑ 3 ) + 0 ) = ( 𝑥 ↑ 3 ) ) |
283 |
280 282
|
eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) + ( 0 · ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) ) = ( 𝑥 ↑ 3 ) ) |
284 |
272
|
mul02d |
⊢ ( 𝑥 ∈ ℚ → ( 0 · 𝑥 ) = 0 ) |
285 |
284
|
oveq1d |
⊢ ( 𝑥 ∈ ℚ → ( ( 0 · 𝑥 ) + - 2 ) = ( 0 + - 2 ) ) |
286 |
26
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 2 ∈ ℂ ) |
287 |
286
|
negcld |
⊢ ( 𝑥 ∈ ℚ → - 2 ∈ ℂ ) |
288 |
287
|
addlidd |
⊢ ( 𝑥 ∈ ℚ → ( 0 + - 2 ) = - 2 ) |
289 |
285 288
|
eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( ( 0 · 𝑥 ) + - 2 ) = - 2 ) |
290 |
283 289
|
oveq12d |
⊢ ( 𝑥 ∈ ℚ → ( ( ( 1 · ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) + ( 0 · ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) ) + ( ( 0 · 𝑥 ) + - 2 ) ) = ( ( 𝑥 ↑ 3 ) + - 2 ) ) |
291 |
281 286
|
negsubd |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑ 3 ) + - 2 ) = ( ( 𝑥 ↑ 3 ) − 2 ) ) |
292 |
249 290 291
|
3eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑥 ↑ 3 ) − 2 ) ) |
293 |
|
2prm |
⊢ 2 ∈ ℙ |
294 |
|
3z |
⊢ 3 ∈ ℤ |
295 |
|
3re |
⊢ 3 ∈ ℝ |
296 |
172 295 173
|
ltleii |
⊢ 2 ≤ 3 |
297 |
64
|
eluz1i |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 3 ∈ ℤ ∧ 2 ≤ 3 ) ) |
298 |
294 296 297
|
mpbir2an |
⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
299 |
|
rtprmirr |
⊢ ( ( 2 ∈ ℙ ∧ 3 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ( ℝ ∖ ℚ ) ) |
300 |
293 298 299
|
mp2an |
⊢ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ( ℝ ∖ ℚ ) |
301 |
|
eldifn |
⊢ ( ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ( ℝ ∖ ℚ ) → ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℚ ) |
302 |
300 301
|
ax-mp |
⊢ ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℚ |
303 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ ℚ ∧ ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℚ ) → 𝑥 ≠ ( 2 ↑𝑐 ( 1 / 3 ) ) ) |
304 |
302 303
|
mpan2 |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ≠ ( 2 ↑𝑐 ( 1 / 3 ) ) ) |
305 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
306 |
305
|
adantr |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 𝑥 ∈ ℝ ) |
307 |
|
2pos |
⊢ 0 < 2 |
308 |
281 286
|
subeq0ad |
⊢ ( 𝑥 ∈ ℚ → ( ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ↔ ( 𝑥 ↑ 3 ) = 2 ) ) |
309 |
308
|
biimpa |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( 𝑥 ↑ 3 ) = 2 ) |
310 |
307 309
|
breqtrrid |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 0 < ( 𝑥 ↑ 3 ) ) |
311 |
81
|
a1i |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 3 ∈ ℕ ) |
312 |
|
n2dvds3 |
⊢ ¬ 2 ∥ 3 |
313 |
312
|
a1i |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ¬ 2 ∥ 3 ) |
314 |
306 311 313
|
expgt0b |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( 0 < 𝑥 ↔ 0 < ( 𝑥 ↑ 3 ) ) ) |
315 |
310 314
|
mpbird |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 0 < 𝑥 ) |
316 |
306 315
|
elrpd |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 𝑥 ∈ ℝ+ ) |
317 |
295
|
a1i |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 3 ∈ ℝ ) |
318 |
29
|
a1i |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( 1 / 3 ) ∈ ℂ ) |
319 |
316 317 318
|
cxpmuld |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( 𝑥 ↑𝑐 ( 3 · ( 1 / 3 ) ) ) = ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1 / 3 ) ) ) |
320 |
27
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 3 ∈ ℂ ) |
321 |
28
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 3 ≠ 0 ) |
322 |
320 321
|
recidd |
⊢ ( 𝑥 ∈ ℚ → ( 3 · ( 1 / 3 ) ) = 1 ) |
323 |
322
|
oveq2d |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 ↑𝑐 ( 3 · ( 1 / 3 ) ) ) = ( 𝑥 ↑𝑐 1 ) ) |
324 |
272
|
cxp1d |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 ↑𝑐 1 ) = 𝑥 ) |
325 |
323 324
|
eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 ↑𝑐 ( 3 · ( 1 / 3 ) ) ) = 𝑥 ) |
326 |
325
|
adantr |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( 𝑥 ↑𝑐 ( 3 · ( 1 / 3 ) ) ) = 𝑥 ) |
327 |
|
cxpexp |
⊢ ( ( 𝑥 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑥 ↑𝑐 3 ) = ( 𝑥 ↑ 3 ) ) |
328 |
272 263 327
|
syl2anc |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 ↑𝑐 3 ) = ( 𝑥 ↑ 3 ) ) |
329 |
328
|
oveq1d |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1 / 3 ) ) = ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1 / 3 ) ) ) |
330 |
329
|
adantr |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1 / 3 ) ) = ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1 / 3 ) ) ) |
331 |
319 326 330
|
3eqtr3rd |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1 / 3 ) ) = 𝑥 ) |
332 |
309
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1 / 3 ) ) = ( 2 ↑𝑐 ( 1 / 3 ) ) ) |
333 |
331 332
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 𝑥 ↑ 3 ) − 2 ) = 0 ) → 𝑥 = ( 2 ↑𝑐 ( 1 / 3 ) ) ) |
334 |
304 333
|
mteqand |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑ 3 ) − 2 ) ≠ 0 ) |
335 |
292 334
|
eqnetrd |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) ≠ 0 ) |
336 |
335
|
neneqd |
⊢ ( 𝑥 ∈ ℚ → ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
337 |
336
|
rgen |
⊢ ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 |
338 |
337
|
a1i |
⊢ ( ⊤ → ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
339 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ ↔ ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
340 |
338 339
|
sylibr |
⊢ ( ⊤ → { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ ) |
341 |
105 340
|
eqtrd |
⊢ ( ⊤ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = ∅ ) |
342 |
91 92 7 4 39 96 100 341 130
|
ply1dg3rt0irred |
⊢ ( ⊤ → 𝐹 ∈ ( Irred ‘ 𝑃 ) ) |
343 |
|
eqid |
⊢ ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 ) |
344 |
343 35
|
irredn0 |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐹 ∈ ( Irred ‘ 𝑃 ) ) → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
345 |
49 342 344
|
syl2anc |
⊢ ( ⊤ → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
346 |
1
|
fveq2i |
⊢ ( deg1 ‘ 𝑄 ) = ( deg1 ‘ ( ℂfld ↾s ℚ ) ) |
347 |
7 346
|
eqtri |
⊢ 𝐷 = ( deg1 ‘ ( ℂfld ↾s ℚ ) ) |
348 |
|
eqid |
⊢ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) = ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) |
349 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
350 |
349
|
qrng1 |
⊢ 1 = ( 1r ‘ ( ℂfld ↾s ℚ ) ) |
351 |
13 39 35 347 348 350
|
ismon1p |
⊢ ( 𝐹 ∈ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) ↔ ( 𝐹 ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = 1 ) ) |
352 |
100 345 163 351
|
syl3anbrc |
⊢ ( ⊤ → 𝐹 ∈ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) ) |
353 |
11 13 14 19 25 33 34 10 35 90 342 352
|
irredminply |
⊢ ( ⊤ → 𝐹 = ( 𝑀 ‘ 𝐴 ) ) |
354 |
353 130
|
jca |
⊢ ( ⊤ → ( 𝐹 = ( 𝑀 ‘ 𝐴 ) ∧ ( 𝐷 ‘ 𝐹 ) = 3 ) ) |
355 |
354
|
mptru |
⊢ ( 𝐹 = ( 𝑀 ‘ 𝐴 ) ∧ ( 𝐷 ‘ 𝐹 ) = 3 ) |