| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqr3minply.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | 2sqr3minply.1 | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 3 |  | 2sqr3minply.2 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 4 |  | 2sqr3minply.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑄 ) | 
						
							| 5 |  | 2sqr3minply.k | ⊢ 𝐾  =  ( algSc ‘ 𝑃 ) | 
						
							| 6 |  | 2sqr3minply.x | ⊢ 𝑋  =  ( var1 ‘ 𝑄 ) | 
						
							| 7 |  | 2sqr3minply.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑄 ) | 
						
							| 8 |  | 2sqr3minply.f | ⊢ 𝐹  =  ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) | 
						
							| 9 |  | 2sqr3minply.a | ⊢ 𝐴  =  ( 2 ↑𝑐 ( 1  /  3 ) ) | 
						
							| 10 |  | 2sqr3minply.m | ⊢ 𝑀  =  ( ℂfld  minPoly  ℚ ) | 
						
							| 11 |  | eqid | ⊢ ( ℂfld  evalSub1  ℚ )  =  ( ℂfld  evalSub1  ℚ ) | 
						
							| 12 | 1 | fveq2i | ⊢ ( Poly1 ‘ 𝑄 )  =  ( Poly1 ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 13 | 4 12 | eqtri | ⊢ 𝑃  =  ( Poly1 ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 14 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 15 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 16 |  | cncrng | ⊢ ℂfld  ∈  CRing | 
						
							| 17 |  | isfld | ⊢ ( ℂfld  ∈  Field  ↔  ( ℂfld  ∈  DivRing  ∧  ℂfld  ∈  CRing ) ) | 
						
							| 18 | 15 16 17 | mpbir2an | ⊢ ℂfld  ∈  Field | 
						
							| 19 | 18 | a1i | ⊢ ( ⊤  →  ℂfld  ∈  Field ) | 
						
							| 20 |  | qsubdrg | ⊢ ( ℚ  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  ℚ )  ∈  DivRing ) | 
						
							| 21 | 20 | simpli | ⊢ ℚ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 22 | 20 | simpri | ⊢ ( ℂfld  ↾s  ℚ )  ∈  DivRing | 
						
							| 23 |  | issdrg | ⊢ ( ℚ  ∈  ( SubDRing ‘ ℂfld )  ↔  ( ℂfld  ∈  DivRing  ∧  ℚ  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  ℚ )  ∈  DivRing ) ) | 
						
							| 24 | 15 21 22 23 | mpbir3an | ⊢ ℚ  ∈  ( SubDRing ‘ ℂfld ) | 
						
							| 25 | 24 | a1i | ⊢ ( ⊤  →  ℚ  ∈  ( SubDRing ‘ ℂfld ) ) | 
						
							| 26 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 27 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 28 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 29 | 27 28 | reccli | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 30 |  | cxpcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 1  /  3 )  ∈  ℂ )  →  ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ℂ ) | 
						
							| 31 | 26 29 30 | mp2an | ⊢ ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ℂ | 
						
							| 32 | 9 31 | eqeltri | ⊢ 𝐴  ∈  ℂ | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  𝐴  ∈  ℂ ) | 
						
							| 34 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 35 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 36 | 8 | fveq2i | ⊢ ( ( ℂfld  evalSub1  ℚ ) ‘ 𝐹 )  =  ( ( ℂfld  evalSub1  ℚ ) ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) | 
						
							| 37 | 36 | fveq1i | ⊢ ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝐹 ) ‘ 𝐴 )  =  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝐹 ) ‘ 𝐴 )  =  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 ) ) | 
						
							| 39 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 40 |  | cnfldsub | ⊢  −   =  ( -g ‘ ℂfld ) | 
						
							| 41 | 16 | a1i | ⊢ ( ⊤  →  ℂfld  ∈  CRing ) | 
						
							| 42 | 21 | a1i | ⊢ ( ⊤  →  ℚ  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 43 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 44 | 43 39 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 45 | 1 | qdrng | ⊢ 𝑄  ∈  DivRing | 
						
							| 46 | 45 | a1i | ⊢ ( ⊤  →  𝑄  ∈  DivRing ) | 
						
							| 47 | 46 | drngringd | ⊢ ( ⊤  →  𝑄  ∈  Ring ) | 
						
							| 48 | 4 | ply1ring | ⊢ ( 𝑄  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ⊤  →  𝑃  ∈  Ring ) | 
						
							| 50 | 43 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ⊤  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 52 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 53 | 52 | a1i | ⊢ ( ⊤  →  3  ∈  ℕ0 ) | 
						
							| 54 | 6 4 39 | vr1cl | ⊢ ( 𝑄  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 55 | 47 54 | syl | ⊢ ( ⊤  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 56 | 44 3 51 53 55 | mulgnn0cld | ⊢ ( ⊤  →  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 57 | 47 | mptru | ⊢ 𝑄  ∈  Ring | 
						
							| 58 | 4 | ply1sca | ⊢ ( 𝑄  ∈  Ring  →  𝑄  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 59 | 57 58 | ax-mp | ⊢ 𝑄  =  ( Scalar ‘ 𝑃 ) | 
						
							| 60 | 4 | ply1lmod | ⊢ ( 𝑄  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 61 | 47 60 | syl | ⊢ ( ⊤  →  𝑃  ∈  LMod ) | 
						
							| 62 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 63 | 5 59 49 61 62 39 | asclf | ⊢ ( ⊤  →  𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 64 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 65 |  | zq | ⊢ ( 2  ∈  ℤ  →  2  ∈  ℚ ) | 
						
							| 66 | 64 65 | mp1i | ⊢ ( ⊤  →  2  ∈  ℚ ) | 
						
							| 67 | 63 66 | ffvelcdmd | ⊢ ( ⊤  →  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 68 | 11 14 4 1 39 2 40 41 42 56 67 33 | evls1subd | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 𝐴 )  =  ( ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  −  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) ) ) | 
						
							| 69 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 70 | 11 14 4 1 39 41 42 3 69 53 55 33 | evls1expd | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  =  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) ) ) | 
						
							| 71 | 11 6 1 14 41 42 | evls1var | ⊢ ( ⊤  →  ( ( ℂfld  evalSub1  ℚ ) ‘ 𝑋 )  =  (  I   ↾  ℂ ) ) | 
						
							| 72 | 71 | fveq1d | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝑋 ) ‘ 𝐴 )  =  ( (  I   ↾  ℂ ) ‘ 𝐴 ) ) | 
						
							| 73 |  | fvresi | ⊢ ( 𝐴  ∈  ℂ  →  ( (  I   ↾  ℂ ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 74 | 32 73 | mp1i | ⊢ ( ⊤  →  ( (  I   ↾  ℂ ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝑋 ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ⊤  →  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝑋 ) ‘ 𝐴 ) )  =  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) | 
						
							| 77 |  | cnfldexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( 𝐴 ↑ 3 ) ) | 
						
							| 78 | 33 53 77 | syl2anc | ⊢ ( ⊤  →  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( 𝐴 ↑ 3 ) ) | 
						
							| 79 | 70 76 78 | 3eqtrd | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  =  ( 𝐴 ↑ 3 ) ) | 
						
							| 80 | 9 | oveq1i | ⊢ ( 𝐴 ↑ 3 )  =  ( ( 2 ↑𝑐 ( 1  /  3 ) ) ↑ 3 ) | 
						
							| 81 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 82 |  | cxproot | ⊢ ( ( 2  ∈  ℂ  ∧  3  ∈  ℕ )  →  ( ( 2 ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  2 ) | 
						
							| 83 | 26 81 82 | mp2an | ⊢ ( ( 2 ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  2 | 
						
							| 84 | 80 83 | eqtri | ⊢ ( 𝐴 ↑ 3 )  =  2 | 
						
							| 85 | 79 84 | eqtrdi | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  =  2 ) | 
						
							| 86 | 11 4 1 14 5 41 42 66 33 | evls1scafv | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 )  =  2 ) | 
						
							| 87 | 85 86 | oveq12d | ⊢ ( ⊤  →  ( ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  −  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) )  =  ( 2  −  2 ) ) | 
						
							| 88 | 26 | subidi | ⊢ ( 2  −  2 )  =  0 | 
						
							| 89 | 87 88 | eqtrdi | ⊢ ( ⊤  →  ( ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 3  ↑  𝑋 ) ) ‘ 𝐴 )  −  ( ( ( ℂfld  evalSub1  ℚ ) ‘ ( 𝐾 ‘ 2 ) ) ‘ 𝐴 ) )  =  0 ) | 
						
							| 90 | 38 68 89 | 3eqtrd | ⊢ ( ⊤  →  ( ( ( ℂfld  evalSub1  ℚ ) ‘ 𝐹 ) ‘ 𝐴 )  =  0 ) | 
						
							| 91 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 92 |  | eqid | ⊢ ( eval1 ‘ 𝑄 )  =  ( eval1 ‘ 𝑄 ) | 
						
							| 93 |  | fldsdrgfld | ⊢ ( ( ℂfld  ∈  Field  ∧  ℚ  ∈  ( SubDRing ‘ ℂfld ) )  →  ( ℂfld  ↾s  ℚ )  ∈  Field ) | 
						
							| 94 | 18 24 93 | mp2an | ⊢ ( ℂfld  ↾s  ℚ )  ∈  Field | 
						
							| 95 | 1 94 | eqeltri | ⊢ 𝑄  ∈  Field | 
						
							| 96 | 95 | a1i | ⊢ ( ⊤  →  𝑄  ∈  Field ) | 
						
							| 97 | 49 | ringgrpd | ⊢ ( ⊤  →  𝑃  ∈  Grp ) | 
						
							| 98 | 39 2 | grpsubcl | ⊢ ( ( 𝑃  ∈  Grp  ∧  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 99 | 97 56 67 98 | syl3anc | ⊢ ( ⊤  →  ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 100 | 8 99 | eqeltrid | ⊢ ( ⊤  →  𝐹  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 101 | 96 | fldcrngd | ⊢ ( ⊤  →  𝑄  ∈  CRing ) | 
						
							| 102 | 92 4 39 101 62 100 | evl1fvf | ⊢ ( ⊤  →  ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) : ℚ ⟶ ℚ ) | 
						
							| 103 | 102 | ffnd | ⊢ ( ⊤  →  ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 )  Fn  ℚ ) | 
						
							| 104 |  | fniniseg2 | ⊢ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 )  Fn  ℚ  →  ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 )  “  { 0 } )  =  { 𝑥  ∈  ℚ  ∣  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 } ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ⊤  →  ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 )  “  { 0 } )  =  { 𝑥  ∈  ℚ  ∣  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 } ) | 
						
							| 106 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 107 | 1 106 | ressmulr | ⊢ ( ℚ  ∈  ( SubRing ‘ ℂfld )  →   ·   =  ( .r ‘ 𝑄 ) ) | 
						
							| 108 | 21 107 | ax-mp | ⊢  ·   =  ( .r ‘ 𝑄 ) | 
						
							| 109 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 110 | 1 109 | ressplusg | ⊢ ( ℚ  ∈  ( SubRing ‘ ℂfld )  →   +   =  ( +g ‘ 𝑄 ) ) | 
						
							| 111 | 21 110 | ax-mp | ⊢  +   =  ( +g ‘ 𝑄 ) | 
						
							| 112 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 113 |  | eqid | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ 𝐹 ) | 
						
							| 114 | 8 | fveq2i | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) | 
						
							| 115 | 114 | a1i | ⊢ ( ⊤  →  ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ) | 
						
							| 116 | 8 | fveq2i | ⊢ ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) | 
						
							| 117 | 116 | a1i | ⊢ ( ⊤  →  ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ) | 
						
							| 118 |  | 3pos | ⊢ 0  <  3 | 
						
							| 119 | 118 | a1i | ⊢ ( ⊤  →  0  <  3 ) | 
						
							| 120 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 121 | 120 | a1i | ⊢ ( ⊤  →  2  ≠  0 ) | 
						
							| 122 | 7 4 62 5 91 | deg1scl | ⊢ ( ( 𝑄  ∈  Ring  ∧  2  ∈  ℚ  ∧  2  ≠  0 )  →  ( 𝐷 ‘ ( 𝐾 ‘ 2 ) )  =  0 ) | 
						
							| 123 | 47 66 121 122 | syl3anc | ⊢ ( ⊤  →  ( 𝐷 ‘ ( 𝐾 ‘ 2 ) )  =  0 ) | 
						
							| 124 |  | drngnzr | ⊢ ( 𝑄  ∈  DivRing  →  𝑄  ∈  NzRing ) | 
						
							| 125 | 45 124 | mp1i | ⊢ ( ⊤  →  𝑄  ∈  NzRing ) | 
						
							| 126 | 7 4 6 43 3 | deg1pw | ⊢ ( ( 𝑄  ∈  NzRing  ∧  3  ∈  ℕ0 )  →  ( 𝐷 ‘ ( 3  ↑  𝑋 ) )  =  3 ) | 
						
							| 127 | 125 53 126 | syl2anc | ⊢ ( ⊤  →  ( 𝐷 ‘ ( 3  ↑  𝑋 ) )  =  3 ) | 
						
							| 128 | 119 123 127 | 3brtr4d | ⊢ ( ⊤  →  ( 𝐷 ‘ ( 𝐾 ‘ 2 ) )  <  ( 𝐷 ‘ ( 3  ↑  𝑋 ) ) ) | 
						
							| 129 | 4 7 47 39 2 56 67 128 | deg1sub | ⊢ ( ⊤  →  ( 𝐷 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) )  =  ( 𝐷 ‘ ( 3  ↑  𝑋 ) ) ) | 
						
							| 130 | 117 129 127 | 3eqtrd | ⊢ ( ⊤  →  ( 𝐷 ‘ 𝐹 )  =  3 ) | 
						
							| 131 | 115 130 | fveq12d | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  =  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 3 ) ) | 
						
							| 132 |  | eqid | ⊢ ( -g ‘ 𝑄 )  =  ( -g ‘ 𝑄 ) | 
						
							| 133 | 4 39 2 132 | coe1subfv | ⊢ ( ( ( 𝑄  ∈  Ring  ∧  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) )  ∧  3  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 3 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) | 
						
							| 134 | 47 56 67 53 133 | syl31anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 3 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) | 
						
							| 135 |  | subrgsubg | ⊢ ( ℚ  ∈  ( SubRing ‘ ℂfld )  →  ℚ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 136 | 21 135 | mp1i | ⊢ ( ⊤  →  ℚ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 137 |  | eqid | ⊢ ( coe1 ‘ ( 3  ↑  𝑋 ) )  =  ( coe1 ‘ ( 3  ↑  𝑋 ) ) | 
						
							| 138 | 137 39 4 62 | coe1fvalcl | ⊢ ( ( ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  3  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  ∈  ℚ ) | 
						
							| 139 | 56 53 138 | syl2anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  ∈  ℚ ) | 
						
							| 140 |  | eqid | ⊢ ( coe1 ‘ ( 𝐾 ‘ 2 ) )  =  ( coe1 ‘ ( 𝐾 ‘ 2 ) ) | 
						
							| 141 | 140 39 4 62 | coe1fvalcl | ⊢ ( ( ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 )  ∧  3  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 )  ∈  ℚ ) | 
						
							| 142 | 67 53 141 | syl2anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 )  ∈  ℚ ) | 
						
							| 143 | 40 1 132 | subgsub | ⊢ ( ( ℚ  ∈  ( SubGrp ‘ ℂfld )  ∧  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  ∈  ℚ  ∧  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 )  ∈  ℚ )  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  −  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) | 
						
							| 144 | 136 139 142 143 | syl3anc | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  −  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) ) ) | 
						
							| 145 |  | iftrue | ⊢ ( 𝑖  =  3  →  if ( 𝑖  =  3 ,  1 ,  0 )  =  1 ) | 
						
							| 146 | 1 | qrng1 | ⊢ 1  =  ( 1r ‘ 𝑄 ) | 
						
							| 147 | 4 6 3 47 53 91 146 | coe1mon | ⊢ ( ⊤  →  ( coe1 ‘ ( 3  ↑  𝑋 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  3 ,  1 ,  0 ) ) ) | 
						
							| 148 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 149 | 145 147 53 148 | fvmptd4 | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  =  1 ) | 
						
							| 150 | 28 | neii | ⊢ ¬  3  =  0 | 
						
							| 151 |  | eqeq1 | ⊢ ( 𝑖  =  3  →  ( 𝑖  =  0  ↔  3  =  0 ) ) | 
						
							| 152 | 150 151 | mtbiri | ⊢ ( 𝑖  =  3  →  ¬  𝑖  =  0 ) | 
						
							| 153 | 152 | iffalsed | ⊢ ( 𝑖  =  3  →  if ( 𝑖  =  0 ,  2 ,  0 )  =  0 ) | 
						
							| 154 | 4 5 62 91 | coe1scl | ⊢ ( ( 𝑄  ∈  Ring  ∧  2  ∈  ℚ )  →  ( coe1 ‘ ( 𝐾 ‘ 2 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  2 ,  0 ) ) ) | 
						
							| 155 | 47 66 154 | syl2anc | ⊢ ( ⊤  →  ( coe1 ‘ ( 𝐾 ‘ 2 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  2 ,  0 ) ) ) | 
						
							| 156 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 157 | 156 | a1i | ⊢ ( ⊤  →  0  ∈  ℕ0 ) | 
						
							| 158 | 153 155 53 157 | fvmptd4 | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 )  =  0 ) | 
						
							| 159 | 149 158 | oveq12d | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  −  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) )  =  ( 1  −  0 ) ) | 
						
							| 160 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 161 | 159 160 | eqtrdi | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 )  −  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) )  =  1 ) | 
						
							| 162 | 144 161 | eqtr3d | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 3 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 3 ) )  =  1 ) | 
						
							| 163 | 131 134 162 | 3eqtrd | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  =  1 ) | 
						
							| 164 | 130 | fveq2d | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  =  ( ( coe1 ‘ 𝐹 ) ‘ 3 ) ) | 
						
							| 165 | 163 164 | eqtr3d | ⊢ ( ⊤  →  1  =  ( ( coe1 ‘ 𝐹 ) ‘ 3 ) ) | 
						
							| 166 | 165 | mptru | ⊢ 1  =  ( ( coe1 ‘ 𝐹 ) ‘ 3 ) | 
						
							| 167 | 115 | fveq1d | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ 2 )  =  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 2 ) ) | 
						
							| 168 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 169 | 168 | a1i | ⊢ ( ⊤  →  2  ∈  ℕ0 ) | 
						
							| 170 | 4 39 2 132 | coe1subfv | ⊢ ( ( ( 𝑄  ∈  Ring  ∧  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) )  ∧  2  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) ) ) | 
						
							| 171 | 47 56 67 169 170 | syl31anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) ) ) | 
						
							| 172 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 173 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 174 | 172 173 | ltneii | ⊢ 2  ≠  3 | 
						
							| 175 |  | neeq1 | ⊢ ( 𝑖  =  2  →  ( 𝑖  ≠  3  ↔  2  ≠  3 ) ) | 
						
							| 176 | 174 175 | mpbiri | ⊢ ( 𝑖  =  2  →  𝑖  ≠  3 ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( ⊤  ∧  𝑖  =  2 )  →  𝑖  ≠  3 ) | 
						
							| 178 | 177 | neneqd | ⊢ ( ( ⊤  ∧  𝑖  =  2 )  →  ¬  𝑖  =  3 ) | 
						
							| 179 | 178 | iffalsed | ⊢ ( ( ⊤  ∧  𝑖  =  2 )  →  if ( 𝑖  =  3 ,  1 ,  0 )  =  0 ) | 
						
							| 180 | 147 179 169 157 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 2 )  =  0 ) | 
						
							| 181 |  | neeq1 | ⊢ ( 𝑖  =  2  →  ( 𝑖  ≠  0  ↔  2  ≠  0 ) ) | 
						
							| 182 | 120 181 | mpbiri | ⊢ ( 𝑖  =  2  →  𝑖  ≠  0 ) | 
						
							| 183 | 182 | neneqd | ⊢ ( 𝑖  =  2  →  ¬  𝑖  =  0 ) | 
						
							| 184 | 183 | adantl | ⊢ ( ( ⊤  ∧  𝑖  =  2 )  →  ¬  𝑖  =  0 ) | 
						
							| 185 | 184 | iffalsed | ⊢ ( ( ⊤  ∧  𝑖  =  2 )  →  if ( 𝑖  =  0 ,  2 ,  0 )  =  0 ) | 
						
							| 186 | 155 185 169 157 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 )  =  0 ) | 
						
							| 187 | 180 186 | oveq12d | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 2 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 2 ) )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 188 | 171 187 | eqtrd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 2 )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 189 | 158 142 | eqeltrrd | ⊢ ( ⊤  →  0  ∈  ℚ ) | 
						
							| 190 | 40 1 132 | subgsub | ⊢ ( ( ℚ  ∈  ( SubGrp ‘ ℂfld )  ∧  0  ∈  ℚ  ∧  0  ∈  ℚ )  →  ( 0  −  0 )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 191 | 136 189 189 190 | syl3anc | ⊢ ( ⊤  →  ( 0  −  0 )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 192 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 193 | 191 192 | eqtr3di | ⊢ ( ⊤  →  ( 0 ( -g ‘ 𝑄 ) 0 )  =  0 ) | 
						
							| 194 | 167 188 193 | 3eqtrrd | ⊢ ( ⊤  →  0  =  ( ( coe1 ‘ 𝐹 ) ‘ 2 ) ) | 
						
							| 195 | 194 | mptru | ⊢ 0  =  ( ( coe1 ‘ 𝐹 ) ‘ 2 ) | 
						
							| 196 | 115 | fveq1d | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ 1 )  =  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 1 ) ) | 
						
							| 197 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 198 | 197 | a1i | ⊢ ( ⊤  →  1  ∈  ℕ0 ) | 
						
							| 199 | 4 39 2 132 | coe1subfv | ⊢ ( ( ( 𝑄  ∈  Ring  ∧  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) )  ∧  1  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) ) ) | 
						
							| 200 | 47 56 67 198 199 | syl31anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) ) ) | 
						
							| 201 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 202 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 203 | 201 202 | ltneii | ⊢ 1  ≠  3 | 
						
							| 204 |  | neeq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  ≠  3  ↔  1  ≠  3 ) ) | 
						
							| 205 | 203 204 | mpbiri | ⊢ ( 𝑖  =  1  →  𝑖  ≠  3 ) | 
						
							| 206 | 205 | neneqd | ⊢ ( 𝑖  =  1  →  ¬  𝑖  =  3 ) | 
						
							| 207 | 206 | adantl | ⊢ ( ( ⊤  ∧  𝑖  =  1 )  →  ¬  𝑖  =  3 ) | 
						
							| 208 | 207 | iffalsed | ⊢ ( ( ⊤  ∧  𝑖  =  1 )  →  if ( 𝑖  =  3 ,  1 ,  0 )  =  0 ) | 
						
							| 209 | 147 208 198 157 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 1 )  =  0 ) | 
						
							| 210 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 211 |  | neeq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  ≠  0  ↔  1  ≠  0 ) ) | 
						
							| 212 | 210 211 | mpbiri | ⊢ ( 𝑖  =  1  →  𝑖  ≠  0 ) | 
						
							| 213 | 212 | neneqd | ⊢ ( 𝑖  =  1  →  ¬  𝑖  =  0 ) | 
						
							| 214 | 213 | adantl | ⊢ ( ( ⊤  ∧  𝑖  =  1 )  →  ¬  𝑖  =  0 ) | 
						
							| 215 | 214 | iffalsed | ⊢ ( ( ⊤  ∧  𝑖  =  1 )  →  if ( 𝑖  =  0 ,  2 ,  0 )  =  0 ) | 
						
							| 216 | 155 215 198 157 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 )  =  0 ) | 
						
							| 217 | 209 216 | oveq12d | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 1 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 1 ) )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 218 | 200 217 | eqtrd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 1 )  =  ( 0 ( -g ‘ 𝑄 ) 0 ) ) | 
						
							| 219 | 196 218 193 | 3eqtrrd | ⊢ ( ⊤  →  0  =  ( ( coe1 ‘ 𝐹 ) ‘ 1 ) ) | 
						
							| 220 | 219 | mptru | ⊢ 0  =  ( ( coe1 ‘ 𝐹 ) ‘ 1 ) | 
						
							| 221 | 115 | fveq1d | ⊢ ( ⊤  →  ( ( coe1 ‘ 𝐹 ) ‘ 0 )  =  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 0 ) ) | 
						
							| 222 | 4 39 2 132 | coe1subfv | ⊢ ( ( ( 𝑄  ∈  Ring  ∧  ( 3  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾 ‘ 2 )  ∈  ( Base ‘ 𝑃 ) )  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) ) ) | 
						
							| 223 | 47 56 67 157 222 | syl31anc | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) ) ) | 
						
							| 224 | 28 | necomi | ⊢ 0  ≠  3 | 
						
							| 225 |  | neeq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  ≠  3  ↔  0  ≠  3 ) ) | 
						
							| 226 | 224 225 | mpbiri | ⊢ ( 𝑖  =  0  →  𝑖  ≠  3 ) | 
						
							| 227 | 226 | neneqd | ⊢ ( 𝑖  =  0  →  ¬  𝑖  =  3 ) | 
						
							| 228 | 227 | adantl | ⊢ ( ( ⊤  ∧  𝑖  =  0 )  →  ¬  𝑖  =  3 ) | 
						
							| 229 | 228 | iffalsed | ⊢ ( ( ⊤  ∧  𝑖  =  0 )  →  if ( 𝑖  =  3 ,  1 ,  0 )  =  0 ) | 
						
							| 230 | 147 229 157 157 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 0 )  =  0 ) | 
						
							| 231 |  | simpr | ⊢ ( ( ⊤  ∧  𝑖  =  0 )  →  𝑖  =  0 ) | 
						
							| 232 | 231 | iftrued | ⊢ ( ( ⊤  ∧  𝑖  =  0 )  →  if ( 𝑖  =  0 ,  2 ,  0 )  =  2 ) | 
						
							| 233 | 155 232 157 169 | fvmptd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 )  =  2 ) | 
						
							| 234 | 230 233 | oveq12d | ⊢ ( ⊤  →  ( ( ( coe1 ‘ ( 3  ↑  𝑋 ) ) ‘ 0 ) ( -g ‘ 𝑄 ) ( ( coe1 ‘ ( 𝐾 ‘ 2 ) ) ‘ 0 ) )  =  ( 0 ( -g ‘ 𝑄 ) 2 ) ) | 
						
							| 235 | 223 234 | eqtrd | ⊢ ( ⊤  →  ( ( coe1 ‘ ( ( 3  ↑  𝑋 )  −  ( 𝐾 ‘ 2 ) ) ) ‘ 0 )  =  ( 0 ( -g ‘ 𝑄 ) 2 ) ) | 
						
							| 236 |  | df-neg | ⊢ - 2  =  ( 0  −  2 ) | 
						
							| 237 | 40 1 132 | subgsub | ⊢ ( ( ℚ  ∈  ( SubGrp ‘ ℂfld )  ∧  0  ∈  ℚ  ∧  2  ∈  ℚ )  →  ( 0  −  2 )  =  ( 0 ( -g ‘ 𝑄 ) 2 ) ) | 
						
							| 238 | 136 189 66 237 | syl3anc | ⊢ ( ⊤  →  ( 0  −  2 )  =  ( 0 ( -g ‘ 𝑄 ) 2 ) ) | 
						
							| 239 | 236 238 | eqtr2id | ⊢ ( ⊤  →  ( 0 ( -g ‘ 𝑄 ) 2 )  =  - 2 ) | 
						
							| 240 | 221 235 239 | 3eqtrrd | ⊢ ( ⊤  →  - 2  =  ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 241 | 240 | mptru | ⊢ - 2  =  ( ( coe1 ‘ 𝐹 ) ‘ 0 ) | 
						
							| 242 | 95 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  𝑄  ∈  Field ) | 
						
							| 243 | 242 | fldcrngd | ⊢ ( 𝑥  ∈  ℚ  →  𝑄  ∈  CRing ) | 
						
							| 244 | 100 | mptru | ⊢ 𝐹  ∈  ( Base ‘ 𝑃 ) | 
						
							| 245 | 244 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  𝐹  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 246 | 130 | mptru | ⊢ ( 𝐷 ‘ 𝐹 )  =  3 | 
						
							| 247 | 246 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝐷 ‘ 𝐹 )  =  3 ) | 
						
							| 248 |  | id | ⊢ ( 𝑥  ∈  ℚ  →  𝑥  ∈  ℚ ) | 
						
							| 249 | 4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248 | evl1deg3 | ⊢ ( 𝑥  ∈  ℚ  →  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  +  ( 0  ·  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) )  +  ( ( 0  ·  𝑥 )  +  - 2 ) ) ) | 
						
							| 250 |  | qsscn | ⊢ ℚ  ⊆  ℂ | 
						
							| 251 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ℚ )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℚ ) | 
						
							| 252 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 253 | 252 14 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 254 | 251 253 | ressbas2 | ⊢ ( ℚ  ⊆  ℂ  →  ℚ  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℚ ) ) ) | 
						
							| 255 | 250 254 | ax-mp | ⊢ ℚ  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℚ ) ) | 
						
							| 256 | 1 252 | mgpress | ⊢ ( ( ℂfld  ∈  DivRing  ∧  ℚ  ∈  ( SubRing ‘ ℂfld ) )  →  ( ( mulGrp ‘ ℂfld )  ↾s  ℚ )  =  ( mulGrp ‘ 𝑄 ) ) | 
						
							| 257 | 15 21 256 | mp2an | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ℚ )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 258 | 257 | fveq2i | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℚ ) )  =  ( Base ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 259 | 255 258 | eqtri | ⊢ ℚ  =  ( Base ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 260 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 261 | 260 | ringmgp | ⊢ ( 𝑄  ∈  Ring  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 262 | 57 261 | mp1i | ⊢ ( 𝑥  ∈  ℚ  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 263 | 52 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  3  ∈  ℕ0 ) | 
						
							| 264 | 259 112 262 263 248 | mulgnn0cld | ⊢ ( 𝑥  ∈  ℚ  →  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 )  ∈  ℚ ) | 
						
							| 265 | 250 264 | sselid | ⊢ ( 𝑥  ∈  ℚ  →  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 )  ∈  ℂ ) | 
						
							| 266 | 265 | mullidd | ⊢ ( 𝑥  ∈  ℚ  →  ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  =  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) | 
						
							| 267 | 257 | eqcomi | ⊢ ( mulGrp ‘ 𝑄 )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℚ ) | 
						
							| 268 | 250 253 | sseqtri | ⊢ ℚ  ⊆  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 269 | 268 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  ℚ  ⊆  ( Base ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 270 | 81 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  3  ∈  ℕ ) | 
						
							| 271 | 267 269 248 270 | ressmulgnnd | ⊢ ( 𝑥  ∈  ℚ  →  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 )  =  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 ) ) | 
						
							| 272 |  | qcn | ⊢ ( 𝑥  ∈  ℚ  →  𝑥  ∈  ℂ ) | 
						
							| 273 |  | cnfldexp | ⊢ ( ( 𝑥  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 274 | 272 263 273 | syl2anc | ⊢ ( 𝑥  ∈  ℚ  →  ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑥 )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 275 | 266 271 274 | 3eqtrd | ⊢ ( 𝑥  ∈  ℚ  →  ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 276 | 168 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  2  ∈  ℕ0 ) | 
						
							| 277 | 259 112 262 276 248 | mulgnn0cld | ⊢ ( 𝑥  ∈  ℚ  →  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 )  ∈  ℚ ) | 
						
							| 278 | 250 277 | sselid | ⊢ ( 𝑥  ∈  ℚ  →  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 )  ∈  ℂ ) | 
						
							| 279 | 278 | mul02d | ⊢ ( 𝑥  ∈  ℚ  →  ( 0  ·  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  =  0 ) | 
						
							| 280 | 275 279 | oveq12d | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  +  ( 0  ·  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) )  =  ( ( 𝑥 ↑ 3 )  +  0 ) ) | 
						
							| 281 | 272 263 | expcld | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝑥 ↑ 3 )  ∈  ℂ ) | 
						
							| 282 | 281 | addridd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 𝑥 ↑ 3 )  +  0 )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 283 | 280 282 | eqtrd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  +  ( 0  ·  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 284 | 272 | mul02d | ⊢ ( 𝑥  ∈  ℚ  →  ( 0  ·  𝑥 )  =  0 ) | 
						
							| 285 | 284 | oveq1d | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 0  ·  𝑥 )  +  - 2 )  =  ( 0  +  - 2 ) ) | 
						
							| 286 | 26 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  2  ∈  ℂ ) | 
						
							| 287 | 286 | negcld | ⊢ ( 𝑥  ∈  ℚ  →  - 2  ∈  ℂ ) | 
						
							| 288 | 287 | addlidd | ⊢ ( 𝑥  ∈  ℚ  →  ( 0  +  - 2 )  =  - 2 ) | 
						
							| 289 | 285 288 | eqtrd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 0  ·  𝑥 )  +  - 2 )  =  - 2 ) | 
						
							| 290 | 283 289 | oveq12d | ⊢ ( 𝑥  ∈  ℚ  →  ( ( ( 1  ·  ( 3 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) )  +  ( 0  ·  ( 2 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) 𝑥 ) ) )  +  ( ( 0  ·  𝑥 )  +  - 2 ) )  =  ( ( 𝑥 ↑ 3 )  +  - 2 ) ) | 
						
							| 291 | 281 286 | negsubd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 𝑥 ↑ 3 )  +  - 2 )  =  ( ( 𝑥 ↑ 3 )  −  2 ) ) | 
						
							| 292 | 249 290 291 | 3eqtrd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( 𝑥 ↑ 3 )  −  2 ) ) | 
						
							| 293 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 294 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 295 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 296 | 172 295 173 | ltleii | ⊢ 2  ≤  3 | 
						
							| 297 | 64 | eluz1i | ⊢ ( 3  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 3  ∈  ℤ  ∧  2  ≤  3 ) ) | 
						
							| 298 | 294 296 297 | mpbir2an | ⊢ 3  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 299 |  | rtprmirr | ⊢ ( ( 2  ∈  ℙ  ∧  3  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ( ℝ  ∖  ℚ ) ) | 
						
							| 300 | 293 298 299 | mp2an | ⊢ ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ( ℝ  ∖  ℚ ) | 
						
							| 301 |  | eldifn | ⊢ ( ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ( ℝ  ∖  ℚ )  →  ¬  ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ℚ ) | 
						
							| 302 | 300 301 | ax-mp | ⊢ ¬  ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ℚ | 
						
							| 303 |  | nelne2 | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ¬  ( 2 ↑𝑐 ( 1  /  3 ) )  ∈  ℚ )  →  𝑥  ≠  ( 2 ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 304 | 302 303 | mpan2 | ⊢ ( 𝑥  ∈  ℚ  →  𝑥  ≠  ( 2 ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 305 |  | qre | ⊢ ( 𝑥  ∈  ℚ  →  𝑥  ∈  ℝ ) | 
						
							| 306 | 305 | adantr | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  𝑥  ∈  ℝ ) | 
						
							| 307 |  | 2pos | ⊢ 0  <  2 | 
						
							| 308 | 281 286 | subeq0ad | ⊢ ( 𝑥  ∈  ℚ  →  ( ( ( 𝑥 ↑ 3 )  −  2 )  =  0  ↔  ( 𝑥 ↑ 3 )  =  2 ) ) | 
						
							| 309 | 308 | biimpa | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( 𝑥 ↑ 3 )  =  2 ) | 
						
							| 310 | 307 309 | breqtrrid | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  0  <  ( 𝑥 ↑ 3 ) ) | 
						
							| 311 | 81 | a1i | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  3  ∈  ℕ ) | 
						
							| 312 |  | n2dvds3 | ⊢ ¬  2  ∥  3 | 
						
							| 313 | 312 | a1i | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ¬  2  ∥  3 ) | 
						
							| 314 | 306 311 313 | expgt0b | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( 0  <  𝑥  ↔  0  <  ( 𝑥 ↑ 3 ) ) ) | 
						
							| 315 | 310 314 | mpbird | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  0  <  𝑥 ) | 
						
							| 316 | 306 315 | elrpd | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  𝑥  ∈  ℝ+ ) | 
						
							| 317 | 295 | a1i | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  3  ∈  ℝ ) | 
						
							| 318 | 29 | a1i | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( 1  /  3 )  ∈  ℂ ) | 
						
							| 319 | 316 317 318 | cxpmuld | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( 𝑥 ↑𝑐 ( 3  ·  ( 1  /  3 ) ) )  =  ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 320 | 27 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  3  ∈  ℂ ) | 
						
							| 321 | 28 | a1i | ⊢ ( 𝑥  ∈  ℚ  →  3  ≠  0 ) | 
						
							| 322 | 320 321 | recidd | ⊢ ( 𝑥  ∈  ℚ  →  ( 3  ·  ( 1  /  3 ) )  =  1 ) | 
						
							| 323 | 322 | oveq2d | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝑥 ↑𝑐 ( 3  ·  ( 1  /  3 ) ) )  =  ( 𝑥 ↑𝑐 1 ) ) | 
						
							| 324 | 272 | cxp1d | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝑥 ↑𝑐 1 )  =  𝑥 ) | 
						
							| 325 | 323 324 | eqtrd | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝑥 ↑𝑐 ( 3  ·  ( 1  /  3 ) ) )  =  𝑥 ) | 
						
							| 326 | 325 | adantr | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( 𝑥 ↑𝑐 ( 3  ·  ( 1  /  3 ) ) )  =  𝑥 ) | 
						
							| 327 |  | cxpexp | ⊢ ( ( 𝑥  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝑥 ↑𝑐 3 )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 328 | 272 263 327 | syl2anc | ⊢ ( 𝑥  ∈  ℚ  →  ( 𝑥 ↑𝑐 3 )  =  ( 𝑥 ↑ 3 ) ) | 
						
							| 329 | 328 | oveq1d | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1  /  3 ) )  =  ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 330 | 329 | adantr | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( ( 𝑥 ↑𝑐 3 ) ↑𝑐 ( 1  /  3 ) )  =  ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 331 | 319 326 330 | 3eqtr3rd | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1  /  3 ) )  =  𝑥 ) | 
						
							| 332 | 309 | oveq1d | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  ( ( 𝑥 ↑ 3 ) ↑𝑐 ( 1  /  3 ) )  =  ( 2 ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 333 | 331 332 | eqtr3d | ⊢ ( ( 𝑥  ∈  ℚ  ∧  ( ( 𝑥 ↑ 3 )  −  2 )  =  0 )  →  𝑥  =  ( 2 ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 334 | 304 333 | mteqand | ⊢ ( 𝑥  ∈  ℚ  →  ( ( 𝑥 ↑ 3 )  −  2 )  ≠  0 ) | 
						
							| 335 | 292 334 | eqnetrd | ⊢ ( 𝑥  ∈  ℚ  →  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  ≠  0 ) | 
						
							| 336 | 335 | neneqd | ⊢ ( 𝑥  ∈  ℚ  →  ¬  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 337 | 336 | rgen | ⊢ ∀ 𝑥  ∈  ℚ ¬  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 | 
						
							| 338 | 337 | a1i | ⊢ ( ⊤  →  ∀ 𝑥  ∈  ℚ ¬  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 339 |  | rabeq0 | ⊢ ( { 𝑥  ∈  ℚ  ∣  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 }  =  ∅  ↔  ∀ 𝑥  ∈  ℚ ¬  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 340 | 338 339 | sylibr | ⊢ ( ⊤  →  { 𝑥  ∈  ℚ  ∣  ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 )  =  0 }  =  ∅ ) | 
						
							| 341 | 105 340 | eqtrd | ⊢ ( ⊤  →  ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 )  “  { 0 } )  =  ∅ ) | 
						
							| 342 | 91 92 7 4 39 96 100 341 130 | ply1dg3rt0irred | ⊢ ( ⊤  →  𝐹  ∈  ( Irred ‘ 𝑃 ) ) | 
						
							| 343 |  | eqid | ⊢ ( Irred ‘ 𝑃 )  =  ( Irred ‘ 𝑃 ) | 
						
							| 344 | 343 35 | irredn0 | ⊢ ( ( 𝑃  ∈  Ring  ∧  𝐹  ∈  ( Irred ‘ 𝑃 ) )  →  𝐹  ≠  ( 0g ‘ 𝑃 ) ) | 
						
							| 345 | 49 342 344 | syl2anc | ⊢ ( ⊤  →  𝐹  ≠  ( 0g ‘ 𝑃 ) ) | 
						
							| 346 | 1 | fveq2i | ⊢ ( deg1 ‘ 𝑄 )  =  ( deg1 ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 347 | 7 346 | eqtri | ⊢ 𝐷  =  ( deg1 ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 348 |  | eqid | ⊢ ( Monic1p ‘ ( ℂfld  ↾s  ℚ ) )  =  ( Monic1p ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 349 |  | eqid | ⊢ ( ℂfld  ↾s  ℚ )  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 350 | 349 | qrng1 | ⊢ 1  =  ( 1r ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 351 | 13 39 35 347 348 350 | ismon1p | ⊢ ( 𝐹  ∈  ( Monic1p ‘ ( ℂfld  ↾s  ℚ ) )  ↔  ( 𝐹  ∈  ( Base ‘ 𝑃 )  ∧  𝐹  ≠  ( 0g ‘ 𝑃 )  ∧  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  =  1 ) ) | 
						
							| 352 | 100 345 163 351 | syl3anbrc | ⊢ ( ⊤  →  𝐹  ∈  ( Monic1p ‘ ( ℂfld  ↾s  ℚ ) ) ) | 
						
							| 353 | 11 13 14 19 25 33 34 10 35 90 342 352 | irredminply | ⊢ ( ⊤  →  𝐹  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 354 | 353 130 | jca | ⊢ ( ⊤  →  ( 𝐹  =  ( 𝑀 ‘ 𝐴 )  ∧  ( 𝐷 ‘ 𝐹 )  =  3 ) ) | 
						
							| 355 | 354 | mptru | ⊢ ( 𝐹  =  ( 𝑀 ‘ 𝐴 )  ∧  ( 𝐷 ‘ 𝐹 )  =  3 ) |