Metamath Proof Explorer


Theorem 2sqr3nconstr

Description: Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length ( 2 ^c ( 1 / 3 ) ) , however that number is not constructible. This is the first part of Metamath 100 proof #8. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025)

Ref Expression
Assertion 2sqr3nconstr ( 2 ↑𝑐 ( 1 / 3 ) ) ∉ Constr

Proof

Step Hyp Ref Expression
1 eqid ( deg1 ‘ ( ℂflds ℚ ) ) = ( deg1 ‘ ( ℂflds ℚ ) )
2 eqid ( ℂfld minPoly ℚ ) = ( ℂfld minPoly ℚ )
3 2cnd ( ⊤ → 2 ∈ ℂ )
4 3cn 3 ∈ ℂ
5 3ne0 3 ≠ 0
6 4 5 reccli ( 1 / 3 ) ∈ ℂ
7 6 a1i ( ⊤ → ( 1 / 3 ) ∈ ℂ )
8 3 7 cxpcld ( ⊤ → ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ )
9 eqidd ( ⊤ → ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) )
10 eqid ( ℂflds ℚ ) = ( ℂflds ℚ )
11 eqid ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) = ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) )
12 eqid ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) )
13 eqid ( Poly1 ‘ ( ℂflds ℚ ) ) = ( Poly1 ‘ ( ℂflds ℚ ) )
14 eqid ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) = ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) )
15 eqid ( var1 ‘ ( ℂflds ℚ ) ) = ( var1 ‘ ( ℂflds ℚ ) )
16 eqid ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) = ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) )
17 eqid ( 2 ↑𝑐 ( 1 / 3 ) ) = ( 2 ↑𝑐 ( 1 / 3 ) )
18 10 11 12 13 14 15 1 16 17 2 2sqr3minply ( ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ∧ ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) ) = 3 )
19 18 simpli ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) )
20 19 fveq2i ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) ) = ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) )
21 18 simpri ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ) ( var1 ‘ ( ℂflds ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂflds ℚ ) ) ) ‘ 2 ) ) ) = 3
22 20 21 eqtr3i ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) = 3
23 3nn0 3 ∈ ℕ0
24 22 23 eqeltri ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ∈ ℕ0
25 24 a1i ( ⊤ → ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ∈ ℕ0 )
26 22 a1i ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) = 3 )
27 3z 3 ∈ ℤ
28 iddvds ( 3 ∈ ℤ → 3 ∥ 3 )
29 27 28 ax-mp 3 ∥ 3
30 simpr ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = ( 2 ↑ 𝑛 ) )
31 29 30 breqtrid ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 ∥ ( 2 ↑ 𝑛 ) )
32 3prm 3 ∈ ℙ
33 2prm 2 ∈ ℙ
34 prmdvdsexpr ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) )
35 32 33 34 mp3an12 ( 𝑛 ∈ ℕ0 → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) )
36 35 imp ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( 2 ↑ 𝑛 ) ) → 3 = 2 )
37 31 36 syldan ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = 2 )
38 2re 2 ∈ ℝ
39 2lt3 2 < 3
40 38 39 gtneii 3 ≠ 2
41 40 neii ¬ 3 = 2
42 41 a1i ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → ¬ 3 = 2 )
43 37 42 pm2.65da ( 𝑛 ∈ ℕ0 → ¬ 3 = ( 2 ↑ 𝑛 ) )
44 43 neqned ( 𝑛 ∈ ℕ0 → 3 ≠ ( 2 ↑ 𝑛 ) )
45 26 44 eqnetrd ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ≠ ( 2 ↑ 𝑛 ) )
46 45 adantl ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( deg1 ‘ ( ℂflds ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ≠ ( 2 ↑ 𝑛 ) )
47 1 2 8 9 25 46 constrcon ( ⊤ → ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ Constr )
48 47 mptru ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ Constr
49 48 nelir ( 2 ↑𝑐 ( 1 / 3 ) ) ∉ Constr