| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( deg1 ‘ ( ℂfld ↾s ℚ ) ) = ( deg1 ‘ ( ℂfld ↾s ℚ ) ) |
| 2 |
|
eqid |
⊢ ( ℂfld minPoly ℚ ) = ( ℂfld minPoly ℚ ) |
| 3 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 4 |
|
3cn |
⊢ 3 ∈ ℂ |
| 5 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 6 |
4 5
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 7 |
6
|
a1i |
⊢ ( ⊤ → ( 1 / 3 ) ∈ ℂ ) |
| 8 |
3 7
|
cxpcld |
⊢ ( ⊤ → ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
| 9 |
|
eqidd |
⊢ ( ⊤ → ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
| 11 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 12 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
| 14 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 15 |
|
eqid |
⊢ ( var1 ‘ ( ℂfld ↾s ℚ ) ) = ( var1 ‘ ( ℂfld ↾s ℚ ) ) |
| 16 |
|
eqid |
⊢ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) = ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) |
| 17 |
|
eqid |
⊢ ( 2 ↑𝑐 ( 1 / 3 ) ) = ( 2 ↑𝑐 ( 1 / 3 ) ) |
| 18 |
10 11 12 13 14 15 1 16 17 2
|
2sqr3minply |
⊢ ( ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ∧ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) ) = 3 ) |
| 19 |
18
|
simpli |
⊢ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) = ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) |
| 20 |
19
|
fveq2i |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) ) = ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) |
| 21 |
18
|
simpri |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( -g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 2 ) ) ) = 3 |
| 22 |
20 21
|
eqtr3i |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) = 3 |
| 23 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 24 |
22 23
|
eqeltri |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ∈ ℕ0 |
| 25 |
24
|
a1i |
⊢ ( ⊤ → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ∈ ℕ0 ) |
| 26 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) = 3 ) |
| 27 |
|
3z |
⊢ 3 ∈ ℤ |
| 28 |
|
iddvds |
⊢ ( 3 ∈ ℤ → 3 ∥ 3 ) |
| 29 |
27 28
|
ax-mp |
⊢ 3 ∥ 3 |
| 30 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = ( 2 ↑ 𝑛 ) ) |
| 31 |
29 30
|
breqtrid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 ∥ ( 2 ↑ 𝑛 ) ) |
| 32 |
|
3prm |
⊢ 3 ∈ ℙ |
| 33 |
|
2prm |
⊢ 2 ∈ ℙ |
| 34 |
|
prmdvdsexpr |
⊢ ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) ) |
| 35 |
32 33 34
|
mp3an12 |
⊢ ( 𝑛 ∈ ℕ0 → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( 2 ↑ 𝑛 ) ) → 3 = 2 ) |
| 37 |
31 36
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = 2 ) |
| 38 |
|
2re |
⊢ 2 ∈ ℝ |
| 39 |
|
2lt3 |
⊢ 2 < 3 |
| 40 |
38 39
|
gtneii |
⊢ 3 ≠ 2 |
| 41 |
40
|
neii |
⊢ ¬ 3 = 2 |
| 42 |
41
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → ¬ 3 = 2 ) |
| 43 |
37 42
|
pm2.65da |
⊢ ( 𝑛 ∈ ℕ0 → ¬ 3 = ( 2 ↑ 𝑛 ) ) |
| 44 |
43
|
neqned |
⊢ ( 𝑛 ∈ ℕ0 → 3 ≠ ( 2 ↑ 𝑛 ) ) |
| 45 |
26 44
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ≠ ( 2 ↑ 𝑛 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ ( 2 ↑𝑐 ( 1 / 3 ) ) ) ) ≠ ( 2 ↑ 𝑛 ) ) |
| 47 |
1 2 8 9 25 46
|
constrcon |
⊢ ( ⊤ → ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ Constr ) |
| 48 |
47
|
mptru |
⊢ ¬ ( 2 ↑𝑐 ( 1 / 3 ) ) ∈ Constr |
| 49 |
48
|
nelir |
⊢ ( 2 ↑𝑐 ( 1 / 3 ) ) ∉ Constr |