| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcon.d |
⊢ 𝐷 = ( deg1 ‘ ( ℂfld ↾s ℚ ) ) |
| 2 |
|
constrcon.m |
⊢ 𝑀 = ( ℂfld minPoly ℚ ) |
| 3 |
|
constrcon.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
|
constrcon.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑀 ‘ 𝐴 ) ) |
| 5 |
|
constrcon.1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| 6 |
|
constrcon.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐹 ) ≠ ( 2 ↑ 𝑛 ) ) |
| 7 |
6
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ¬ ( 𝐷 ‘ 𝐹 ) = ( 2 ↑ 𝑛 ) ) |
| 8 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
| 9 |
|
eqid |
⊢ ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) |
| 10 |
|
eqid |
⊢ ( deg1 ‘ ℂfld ) = ( deg1 ‘ ℂfld ) |
| 11 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ Field ) |
| 13 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 14 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 15 |
14
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 16 |
8
|
qdrng |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 17 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
| 18 |
13 15 16 17
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
| 20 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
| 22 |
21 4
|
fveq12d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 23 |
22 5
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 24 |
20 2 1 12 19 3 23
|
minplyelirng |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂfld IntgRing ℚ ) ) |
| 25 |
8 9 10 2 12 19 24
|
algextdeg |
⊢ ( 𝜑 → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( deg1 ‘ ℂfld ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 26 |
|
eqid |
⊢ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 28 |
|
eqid |
⊢ ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ ℂfld ) = ( 0g ‘ ℂfld ) |
| 30 |
|
eqid |
⊢ { 𝑞 ∈ dom ( ℂfld evalSub1 ℚ ) ∣ ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ ℂfld ) } = { 𝑞 ∈ dom ( ℂfld evalSub1 ℚ ) ∣ ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ ℂfld ) } |
| 31 |
|
eqid |
⊢ ( RSpan ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 32 |
|
eqid |
⊢ ( idlGen1p ‘ ( ℂfld ↾s ℚ ) ) = ( idlGen1p ‘ ( ℂfld ↾s ℚ ) ) |
| 33 |
28 26 20 12 19 3 29 30 31 32 2
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) |
| 34 |
15
|
a1i |
⊢ ( 𝜑 → ℚ ∈ ( SubRing ‘ ℂfld ) ) |
| 35 |
8 10 26 27 33 34
|
ressdeg1 |
⊢ ( 𝜑 → ( ( deg1 ‘ ℂfld ) ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 36 |
1 21
|
eqtr3id |
⊢ ( 𝜑 → ( deg1 ‘ ( ℂfld ↾s ℚ ) ) = 𝐷 ) |
| 37 |
4
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 𝐹 ) |
| 38 |
36 37
|
fveq12d |
⊢ ( 𝜑 → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝐷 ‘ 𝐹 ) ) |
| 39 |
25 35 38
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 𝐷 ‘ 𝐹 ) ) |
| 40 |
39
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑛 ) ↔ ( 𝐷 ‘ 𝐹 ) = ( 2 ↑ 𝑛 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑛 ) ↔ ( 𝐷 ‘ 𝐹 ) = ( 2 ↑ 𝑛 ) ) ) |
| 42 |
7 41
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ¬ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑛 ) ) |
| 43 |
42
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑛 ∈ ℕ0 ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑛 ) ) |
| 44 |
|
eqid |
⊢ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) = ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) |
| 45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Constr ) → 𝐴 ∈ Constr ) |
| 46 |
8 9 44 45
|
constrext2chn |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Constr ) → ∃ 𝑛 ∈ ℕ0 ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑛 ) ) |
| 47 |
43 46
|
mtand |
⊢ ( 𝜑 → ¬ 𝐴 ∈ Constr ) |