| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcon.d |
|- D = ( deg1 ` ( CCfld |`s QQ ) ) |
| 2 |
|
constrcon.m |
|- M = ( CCfld minPoly QQ ) |
| 3 |
|
constrcon.a |
|- ( ph -> A e. CC ) |
| 4 |
|
constrcon.f |
|- ( ph -> F = ( M ` A ) ) |
| 5 |
|
constrcon.1 |
|- ( ph -> ( D ` F ) e. NN0 ) |
| 6 |
|
constrcon.2 |
|- ( ( ph /\ n e. NN0 ) -> ( D ` F ) =/= ( 2 ^ n ) ) |
| 7 |
6
|
neneqd |
|- ( ( ph /\ n e. NN0 ) -> -. ( D ` F ) = ( 2 ^ n ) ) |
| 8 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 9 |
|
eqid |
|- ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) |
| 10 |
|
eqid |
|- ( deg1 ` CCfld ) = ( deg1 ` CCfld ) |
| 11 |
|
cnfldfld |
|- CCfld e. Field |
| 12 |
11
|
a1i |
|- ( ph -> CCfld e. Field ) |
| 13 |
|
cndrng |
|- CCfld e. DivRing |
| 14 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 15 |
14
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 16 |
8
|
qdrng |
|- ( CCfld |`s QQ ) e. DivRing |
| 17 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 18 |
13 15 16 17
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 19 |
18
|
a1i |
|- ( ph -> QQ e. ( SubDRing ` CCfld ) ) |
| 20 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 21 |
|
eqidd |
|- ( ph -> D = D ) |
| 22 |
21 4
|
fveq12d |
|- ( ph -> ( D ` F ) = ( D ` ( M ` A ) ) ) |
| 23 |
22 5
|
eqeltrrd |
|- ( ph -> ( D ` ( M ` A ) ) e. NN0 ) |
| 24 |
20 2 1 12 19 3 23
|
minplyelirng |
|- ( ph -> A e. ( CCfld IntgRing QQ ) ) |
| 25 |
8 9 10 2 12 19 24
|
algextdeg |
|- ( ph -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( ( deg1 ` CCfld ) ` ( M ` A ) ) ) |
| 26 |
|
eqid |
|- ( Poly1 ` ( CCfld |`s QQ ) ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 27 |
|
eqid |
|- ( Base ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( Base ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 28 |
|
eqid |
|- ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) |
| 29 |
|
eqid |
|- ( 0g ` CCfld ) = ( 0g ` CCfld ) |
| 30 |
|
eqid |
|- { q e. dom ( CCfld evalSub1 QQ ) | ( ( ( CCfld evalSub1 QQ ) ` q ) ` A ) = ( 0g ` CCfld ) } = { q e. dom ( CCfld evalSub1 QQ ) | ( ( ( CCfld evalSub1 QQ ) ` q ) ` A ) = ( 0g ` CCfld ) } |
| 31 |
|
eqid |
|- ( RSpan ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( RSpan ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 32 |
|
eqid |
|- ( idlGen1p ` ( CCfld |`s QQ ) ) = ( idlGen1p ` ( CCfld |`s QQ ) ) |
| 33 |
28 26 20 12 19 3 29 30 31 32 2
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) |
| 34 |
15
|
a1i |
|- ( ph -> QQ e. ( SubRing ` CCfld ) ) |
| 35 |
8 10 26 27 33 34
|
ressdeg1 |
|- ( ph -> ( ( deg1 ` CCfld ) ` ( M ` A ) ) = ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( M ` A ) ) ) |
| 36 |
1 21
|
eqtr3id |
|- ( ph -> ( deg1 ` ( CCfld |`s QQ ) ) = D ) |
| 37 |
4
|
eqcomd |
|- ( ph -> ( M ` A ) = F ) |
| 38 |
36 37
|
fveq12d |
|- ( ph -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( M ` A ) ) = ( D ` F ) ) |
| 39 |
25 35 38
|
3eqtrd |
|- ( ph -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( D ` F ) ) |
| 40 |
39
|
eqeq1d |
|- ( ph -> ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ n ) <-> ( D ` F ) = ( 2 ^ n ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ n ) <-> ( D ` F ) = ( 2 ^ n ) ) ) |
| 42 |
7 41
|
mtbird |
|- ( ( ph /\ n e. NN0 ) -> -. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ n ) ) |
| 43 |
42
|
nrexdv |
|- ( ph -> -. E. n e. NN0 ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ n ) ) |
| 44 |
|
eqid |
|- ( CCfld fldGen ( QQ u. { A } ) ) = ( CCfld fldGen ( QQ u. { A } ) ) |
| 45 |
|
simpr |
|- ( ( ph /\ A e. Constr ) -> A e. Constr ) |
| 46 |
8 9 44 45
|
constrext2chn |
|- ( ( ph /\ A e. Constr ) -> E. n e. NN0 ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ n ) ) |
| 47 |
43 46
|
mtand |
|- ( ph -> -. A e. Constr ) |