| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldfld |
|- CCfld e. Field |
| 2 |
1
|
a1i |
|- ( T. -> CCfld e. Field ) |
| 3 |
2
|
flddrngd |
|- ( T. -> CCfld e. DivRing ) |
| 4 |
3
|
drngringd |
|- ( T. -> CCfld e. Ring ) |
| 5 |
3
|
drnggrpd |
|- ( T. -> CCfld e. Grp ) |
| 6 |
|
simpr |
|- ( ( T. /\ x e. Constr ) -> x e. Constr ) |
| 7 |
6
|
constrcn |
|- ( ( T. /\ x e. Constr ) -> x e. CC ) |
| 8 |
7
|
ex |
|- ( T. -> ( x e. Constr -> x e. CC ) ) |
| 9 |
8
|
ssrdv |
|- ( T. -> Constr C_ CC ) |
| 10 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 11 |
10
|
zconstr |
|- ( T. -> 1 e. Constr ) |
| 12 |
11
|
ne0d |
|- ( T. -> Constr =/= (/) ) |
| 13 |
|
simplr |
|- ( ( ( T. /\ x e. Constr ) /\ y e. Constr ) -> x e. Constr ) |
| 14 |
|
simpr |
|- ( ( ( T. /\ x e. Constr ) /\ y e. Constr ) -> y e. Constr ) |
| 15 |
13 14
|
constraddcl |
|- ( ( ( T. /\ x e. Constr ) /\ y e. Constr ) -> ( x + y ) e. Constr ) |
| 16 |
15
|
ralrimiva |
|- ( ( T. /\ x e. Constr ) -> A. y e. Constr ( x + y ) e. Constr ) |
| 17 |
|
cnfldneg |
|- ( x e. CC -> ( ( invg ` CCfld ) ` x ) = -u x ) |
| 18 |
7 17
|
syl |
|- ( ( T. /\ x e. Constr ) -> ( ( invg ` CCfld ) ` x ) = -u x ) |
| 19 |
6
|
constrnegcl |
|- ( ( T. /\ x e. Constr ) -> -u x e. Constr ) |
| 20 |
18 19
|
eqeltrd |
|- ( ( T. /\ x e. Constr ) -> ( ( invg ` CCfld ) ` x ) e. Constr ) |
| 21 |
16 20
|
jca |
|- ( ( T. /\ x e. Constr ) -> ( A. y e. Constr ( x + y ) e. Constr /\ ( ( invg ` CCfld ) ` x ) e. Constr ) ) |
| 22 |
21
|
ralrimiva |
|- ( T. -> A. x e. Constr ( A. y e. Constr ( x + y ) e. Constr /\ ( ( invg ` CCfld ) ` x ) e. Constr ) ) |
| 23 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 24 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 25 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
| 26 |
23 24 25
|
issubg2 |
|- ( CCfld e. Grp -> ( Constr e. ( SubGrp ` CCfld ) <-> ( Constr C_ CC /\ Constr =/= (/) /\ A. x e. Constr ( A. y e. Constr ( x + y ) e. Constr /\ ( ( invg ` CCfld ) ` x ) e. Constr ) ) ) ) |
| 27 |
26
|
biimpar |
|- ( ( CCfld e. Grp /\ ( Constr C_ CC /\ Constr =/= (/) /\ A. x e. Constr ( A. y e. Constr ( x + y ) e. Constr /\ ( ( invg ` CCfld ) ` x ) e. Constr ) ) ) -> Constr e. ( SubGrp ` CCfld ) ) |
| 28 |
5 9 12 22 27
|
syl13anc |
|- ( T. -> Constr e. ( SubGrp ` CCfld ) ) |
| 29 |
13 14
|
constrmulcl |
|- ( ( ( T. /\ x e. Constr ) /\ y e. Constr ) -> ( x x. y ) e. Constr ) |
| 30 |
29
|
anasss |
|- ( ( T. /\ ( x e. Constr /\ y e. Constr ) ) -> ( x x. y ) e. Constr ) |
| 31 |
30
|
ralrimivva |
|- ( T. -> A. x e. Constr A. y e. Constr ( x x. y ) e. Constr ) |
| 32 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 33 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 34 |
23 32 33
|
issubrg2 |
|- ( CCfld e. Ring -> ( Constr e. ( SubRing ` CCfld ) <-> ( Constr e. ( SubGrp ` CCfld ) /\ 1 e. Constr /\ A. x e. Constr A. y e. Constr ( x x. y ) e. Constr ) ) ) |
| 35 |
34
|
biimpar |
|- ( ( CCfld e. Ring /\ ( Constr e. ( SubGrp ` CCfld ) /\ 1 e. Constr /\ A. x e. Constr A. y e. Constr ( x x. y ) e. Constr ) ) -> Constr e. ( SubRing ` CCfld ) ) |
| 36 |
4 28 11 31 35
|
syl13anc |
|- ( T. -> Constr e. ( SubRing ` CCfld ) ) |
| 37 |
|
simpr |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> x e. ( Constr \ { 0 } ) ) |
| 38 |
37
|
eldifad |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> x e. Constr ) |
| 39 |
38
|
constrcn |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> x e. CC ) |
| 40 |
|
eldifsni |
|- ( x e. ( Constr \ { 0 } ) -> x =/= 0 ) |
| 41 |
40
|
adantl |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> x =/= 0 ) |
| 42 |
|
cnfldinv |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 44 |
38 41
|
constrinvcl |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> ( 1 / x ) e. Constr ) |
| 45 |
43 44
|
eqeltrd |
|- ( ( T. /\ x e. ( Constr \ { 0 } ) ) -> ( ( invr ` CCfld ) ` x ) e. Constr ) |
| 46 |
45
|
ralrimiva |
|- ( T. -> A. x e. ( Constr \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. Constr ) |
| 47 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
| 48 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 49 |
47 48
|
issdrg2 |
|- ( Constr e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ Constr e. ( SubRing ` CCfld ) /\ A. x e. ( Constr \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. Constr ) ) |
| 50 |
3 36 46 49
|
syl3anbrc |
|- ( T. -> Constr e. ( SubDRing ` CCfld ) ) |
| 51 |
50
|
mptru |
|- Constr e. ( SubDRing ` CCfld ) |