| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrinvcl.1 |
|- ( ph -> X e. Constr ) |
| 2 |
|
constrinvcl.2 |
|- ( ph -> X =/= 0 ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ X e. RR ) -> X e. Constr ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ X e. RR ) -> X =/= 0 ) |
| 5 |
|
simpr |
|- ( ( ph /\ X e. RR ) -> X e. RR ) |
| 6 |
3 4 5
|
constrreinvcl |
|- ( ( ph /\ X e. RR ) -> ( 1 / X ) e. Constr ) |
| 7 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 8 |
1
|
constrcn |
|- ( ph -> X e. CC ) |
| 9 |
7 8 2
|
absdivd |
|- ( ph -> ( abs ` ( 1 / X ) ) = ( ( abs ` 1 ) / ( abs ` X ) ) ) |
| 10 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 11 |
10
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` X ) ) = ( 1 / ( abs ` X ) ) |
| 12 |
9 11
|
eqtr2di |
|- ( ph -> ( 1 / ( abs ` X ) ) = ( abs ` ( 1 / X ) ) ) |
| 13 |
8 2
|
reccld |
|- ( ph -> ( 1 / X ) e. CC ) |
| 14 |
8 2
|
recne0d |
|- ( ph -> ( 1 / X ) =/= 0 ) |
| 15 |
13 14
|
efiargd |
|- ( ph -> ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) = ( ( 1 / X ) / ( abs ` ( 1 / X ) ) ) ) |
| 16 |
12 15
|
oveq12d |
|- ( ph -> ( ( 1 / ( abs ` X ) ) x. ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) ) = ( ( abs ` ( 1 / X ) ) x. ( ( 1 / X ) / ( abs ` ( 1 / X ) ) ) ) ) |
| 17 |
13
|
abscld |
|- ( ph -> ( abs ` ( 1 / X ) ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ph -> ( abs ` ( 1 / X ) ) e. CC ) |
| 19 |
13 14
|
absne0d |
|- ( ph -> ( abs ` ( 1 / X ) ) =/= 0 ) |
| 20 |
13 18 19
|
divcan2d |
|- ( ph -> ( ( abs ` ( 1 / X ) ) x. ( ( 1 / X ) / ( abs ` ( 1 / X ) ) ) ) = ( 1 / X ) ) |
| 21 |
16 20
|
eqtrd |
|- ( ph -> ( ( 1 / ( abs ` X ) ) x. ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) ) = ( 1 / X ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> ( ( 1 / ( abs ` X ) ) x. ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) ) = ( 1 / X ) ) |
| 23 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 24 |
23
|
zconstr |
|- ( ph -> 0 e. Constr ) |
| 25 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 26 |
25
|
zconstr |
|- ( ph -> 1 e. Constr ) |
| 27 |
8
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ph -> ( abs ` X ) e. CC ) |
| 29 |
7
|
subid1d |
|- ( ph -> ( 1 - 0 ) = 1 ) |
| 30 |
29 7
|
eqeltrd |
|- ( ph -> ( 1 - 0 ) e. CC ) |
| 31 |
28 30
|
mulcld |
|- ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) e. CC ) |
| 32 |
31
|
addlidd |
|- ( ph -> ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) = ( ( abs ` X ) x. ( 1 - 0 ) ) ) |
| 33 |
29
|
oveq2d |
|- ( ph -> ( ( abs ` X ) x. ( 1 - 0 ) ) = ( ( abs ` X ) x. 1 ) ) |
| 34 |
28
|
mulridd |
|- ( ph -> ( ( abs ` X ) x. 1 ) = ( abs ` X ) ) |
| 35 |
32 33 34
|
3eqtrrd |
|- ( ph -> ( abs ` X ) = ( 0 + ( ( abs ` X ) x. ( 1 - 0 ) ) ) ) |
| 36 |
8
|
absge0d |
|- ( ph -> 0 <_ ( abs ` X ) ) |
| 37 |
27 36
|
absidd |
|- ( ph -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 38 |
28
|
subid1d |
|- ( ph -> ( ( abs ` X ) - 0 ) = ( abs ` X ) ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( abs ` X ) ) ) |
| 40 |
8
|
subid1d |
|- ( ph -> ( X - 0 ) = X ) |
| 41 |
40
|
fveq2d |
|- ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 42 |
37 39 41
|
3eqtr4d |
|- ( ph -> ( abs ` ( ( abs ` X ) - 0 ) ) = ( abs ` ( X - 0 ) ) ) |
| 43 |
24 26 24 1 24 27 28 35 42
|
constrlccl |
|- ( ph -> ( abs ` X ) e. Constr ) |
| 44 |
8 2
|
absne0d |
|- ( ph -> ( abs ` X ) =/= 0 ) |
| 45 |
43 44 27
|
constrreinvcl |
|- ( ph -> ( 1 / ( abs ` X ) ) e. Constr ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> ( 1 / ( abs ` X ) ) e. Constr ) |
| 47 |
8
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> X e. CC ) |
| 48 |
2
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> X =/= 0 ) |
| 49 |
8
|
adantr |
|- ( ( ph /\ -u X e. RR+ ) -> X e. CC ) |
| 50 |
|
simpr |
|- ( ( ph /\ -u X e. RR+ ) -> -u X e. RR+ ) |
| 51 |
50
|
rpred |
|- ( ( ph /\ -u X e. RR+ ) -> -u X e. RR ) |
| 52 |
49 51
|
negrebd |
|- ( ( ph /\ -u X e. RR+ ) -> X e. RR ) |
| 53 |
52
|
stoic1a |
|- ( ( ph /\ -. X e. RR ) -> -. -u X e. RR+ ) |
| 54 |
47 48 53
|
arginv |
|- ( ( ph /\ -. X e. RR ) -> ( Im ` ( log ` ( 1 / X ) ) ) = -u ( Im ` ( log ` X ) ) ) |
| 55 |
47 48 53
|
argcj |
|- ( ( ph /\ -. X e. RR ) -> ( Im ` ( log ` ( * ` X ) ) ) = -u ( Im ` ( log ` X ) ) ) |
| 56 |
54 55
|
eqtr4d |
|- ( ( ph /\ -. X e. RR ) -> ( Im ` ( log ` ( 1 / X ) ) ) = ( Im ` ( log ` ( * ` X ) ) ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ph /\ -. X e. RR ) -> ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) = ( _i x. ( Im ` ( log ` ( * ` X ) ) ) ) ) |
| 58 |
57
|
fveq2d |
|- ( ( ph /\ -. X e. RR ) -> ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) = ( exp ` ( _i x. ( Im ` ( log ` ( * ` X ) ) ) ) ) ) |
| 59 |
8
|
cjcld |
|- ( ph -> ( * ` X ) e. CC ) |
| 60 |
8 2
|
cjne0d |
|- ( ph -> ( * ` X ) =/= 0 ) |
| 61 |
59 60
|
efiargd |
|- ( ph -> ( exp ` ( _i x. ( Im ` ( log ` ( * ` X ) ) ) ) ) = ( ( * ` X ) / ( abs ` ( * ` X ) ) ) ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> ( exp ` ( _i x. ( Im ` ( log ` ( * ` X ) ) ) ) ) = ( ( * ` X ) / ( abs ` ( * ` X ) ) ) ) |
| 63 |
58 62
|
eqtrd |
|- ( ( ph /\ -. X e. RR ) -> ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) = ( ( * ` X ) / ( abs ` ( * ` X ) ) ) ) |
| 64 |
1
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> X e. Constr ) |
| 65 |
64
|
constrcjcl |
|- ( ( ph /\ -. X e. RR ) -> ( * ` X ) e. Constr ) |
| 66 |
60
|
adantr |
|- ( ( ph /\ -. X e. RR ) -> ( * ` X ) =/= 0 ) |
| 67 |
65 66
|
constrdircl |
|- ( ( ph /\ -. X e. RR ) -> ( ( * ` X ) / ( abs ` ( * ` X ) ) ) e. Constr ) |
| 68 |
63 67
|
eqeltrd |
|- ( ( ph /\ -. X e. RR ) -> ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) e. Constr ) |
| 69 |
46 68
|
constrmulcl |
|- ( ( ph /\ -. X e. RR ) -> ( ( 1 / ( abs ` X ) ) x. ( exp ` ( _i x. ( Im ` ( log ` ( 1 / X ) ) ) ) ) ) e. Constr ) |
| 70 |
22 69
|
eqeltrrd |
|- ( ( ph /\ -. X e. RR ) -> ( 1 / X ) e. Constr ) |
| 71 |
6 70
|
pm2.61dan |
|- ( ph -> ( 1 / X ) e. Constr ) |