| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrinvcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constrinvcl.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → 𝑋 ∈ Constr ) |
| 4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → 𝑋 ≠ 0 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
| 6 |
3 4 5
|
constrreinvcl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ ) → ( 1 / 𝑋 ) ∈ Constr ) |
| 7 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 8 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 9 |
7 8 2
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝑋 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝑋 ) ) ) |
| 10 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 11 |
10
|
oveq1i |
⊢ ( ( abs ‘ 1 ) / ( abs ‘ 𝑋 ) ) = ( 1 / ( abs ‘ 𝑋 ) ) |
| 12 |
9 11
|
eqtr2di |
⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝑋 ) ) = ( abs ‘ ( 1 / 𝑋 ) ) ) |
| 13 |
8 2
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ∈ ℂ ) |
| 14 |
8 2
|
recne0d |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ≠ 0 ) |
| 15 |
13 14
|
efiargd |
⊢ ( 𝜑 → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) = ( ( 1 / 𝑋 ) / ( abs ‘ ( 1 / 𝑋 ) ) ) ) |
| 16 |
12 15
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) ) = ( ( abs ‘ ( 1 / 𝑋 ) ) · ( ( 1 / 𝑋 ) / ( abs ‘ ( 1 / 𝑋 ) ) ) ) ) |
| 17 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝑋 ) ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝑋 ) ) ∈ ℂ ) |
| 19 |
13 14
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝑋 ) ) ≠ 0 ) |
| 20 |
13 18 19
|
divcan2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 1 / 𝑋 ) ) · ( ( 1 / 𝑋 ) / ( abs ‘ ( 1 / 𝑋 ) ) ) ) = ( 1 / 𝑋 ) ) |
| 21 |
16 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) ) = ( 1 / 𝑋 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) ) = ( 1 / 𝑋 ) ) |
| 23 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 24 |
23
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 25 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 26 |
25
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 27 |
8
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 29 |
7
|
subid1d |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 30 |
29 7
|
eqeltrd |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 31 |
28 30
|
mulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 32 |
31
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) |
| 33 |
29
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( abs ‘ 𝑋 ) · 1 ) ) |
| 34 |
28
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · 1 ) = ( abs ‘ 𝑋 ) ) |
| 35 |
32 33 34
|
3eqtrrd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) = ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 36 |
8
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 37 |
27 36
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 38 |
28
|
subid1d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) − 0 ) = ( abs ‘ 𝑋 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( abs ‘ 𝑋 ) ) ) |
| 40 |
8
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 41 |
40
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 42 |
37 39 41
|
3eqtr4d |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 43 |
24 26 24 1 24 27 28 35 42
|
constrlccl |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ Constr ) |
| 44 |
8 2
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 45 |
43 44 27
|
constrreinvcl |
⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝑋 ) ) ∈ Constr ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ Constr ) |
| 47 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
| 48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 𝑋 ≠ 0 ) |
| 49 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℂ ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - 𝑋 ∈ ℝ+ ) |
| 51 |
50
|
rpred |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - 𝑋 ∈ ℝ ) |
| 52 |
49 51
|
negrebd |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ ) |
| 53 |
52
|
stoic1a |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ¬ - 𝑋 ∈ ℝ+ ) |
| 54 |
47 48 53
|
arginv |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) = - ( ℑ ‘ ( log ‘ 𝑋 ) ) ) |
| 55 |
47 48 53
|
argcj |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) = - ( ℑ ‘ ( log ‘ 𝑋 ) ) ) |
| 56 |
54 55
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) = ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) = ( i · ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) = ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) ) ) ) |
| 59 |
8
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 60 |
8 2
|
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ≠ 0 ) |
| 61 |
59 60
|
efiargd |
⊢ ( 𝜑 → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( abs ‘ ( ∗ ‘ 𝑋 ) ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝑋 ) ) ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( abs ‘ ( ∗ ‘ 𝑋 ) ) ) ) |
| 63 |
58 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( abs ‘ ( ∗ ‘ 𝑋 ) ) ) ) |
| 64 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → 𝑋 ∈ Constr ) |
| 65 |
64
|
constrcjcl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ∗ ‘ 𝑋 ) ∈ Constr ) |
| 66 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ∗ ‘ 𝑋 ) ≠ 0 ) |
| 67 |
65 66
|
constrdircl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ( ∗ ‘ 𝑋 ) / ( abs ‘ ( ∗ ‘ 𝑋 ) ) ) ∈ Constr ) |
| 68 |
63 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) ∈ Constr ) |
| 69 |
46 68
|
constrmulcl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ ( 1 / 𝑋 ) ) ) ) ) ) ∈ Constr ) |
| 70 |
22 69
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ℝ ) → ( 1 / 𝑋 ) ∈ Constr ) |
| 71 |
6 70
|
pm2.61dan |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ∈ Constr ) |