| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrinvcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
constrinvcl.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 3 |
|
constrreinvcl.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
|
iconstr |
⊢ i ∈ Constr |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → i ∈ Constr ) |
| 6 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 7 |
5 1
|
constrmulcl |
⊢ ( 𝜑 → ( i · 𝑋 ) ∈ Constr ) |
| 8 |
7
|
constrcn |
⊢ ( 𝜑 → ( i · 𝑋 ) ∈ ℂ ) |
| 9 |
6 8
|
negsubd |
⊢ ( 𝜑 → ( 1 + - ( i · 𝑋 ) ) = ( 1 − ( i · 𝑋 ) ) ) |
| 10 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 11 |
10
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 12 |
7
|
constrnegcl |
⊢ ( 𝜑 → - ( i · 𝑋 ) ∈ Constr ) |
| 13 |
11 12
|
constraddcl |
⊢ ( 𝜑 → ( 1 + - ( i · 𝑋 ) ) ∈ Constr ) |
| 14 |
9 13
|
eqeltrrd |
⊢ ( 𝜑 → ( 1 − ( i · 𝑋 ) ) ∈ Constr ) |
| 15 |
5 14
|
constraddcl |
⊢ ( 𝜑 → ( i + ( 1 − ( i · 𝑋 ) ) ) ∈ Constr ) |
| 16 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 17 |
16
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 18 |
3 2
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ∈ ℂ ) |
| 20 |
5
|
constrcn |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 21 |
6 8
|
subcld |
⊢ ( 𝜑 → ( 1 − ( i · 𝑋 ) ) ∈ ℂ ) |
| 22 |
20 21
|
pncan2d |
⊢ ( 𝜑 → ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) = ( 1 − ( i · 𝑋 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) = ( ( 1 / 𝑋 ) · ( 1 − ( i · 𝑋 ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( i + ( ( 1 / 𝑋 ) · ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) ) = ( i + ( ( 1 / 𝑋 ) · ( 1 − ( i · 𝑋 ) ) ) ) ) |
| 25 |
19 6 8
|
subdid |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( 1 − ( i · 𝑋 ) ) ) = ( ( ( 1 / 𝑋 ) · 1 ) − ( ( 1 / 𝑋 ) · ( i · 𝑋 ) ) ) ) |
| 26 |
19
|
mulridd |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · 1 ) = ( 1 / 𝑋 ) ) |
| 27 |
3
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 28 |
6 27 8 2
|
div32d |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( i · 𝑋 ) ) = ( 1 · ( ( i · 𝑋 ) / 𝑋 ) ) ) |
| 29 |
8 27 2
|
divcld |
⊢ ( 𝜑 → ( ( i · 𝑋 ) / 𝑋 ) ∈ ℂ ) |
| 30 |
29
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( i · 𝑋 ) / 𝑋 ) ) = ( ( i · 𝑋 ) / 𝑋 ) ) |
| 31 |
20 27 2
|
divcan4d |
⊢ ( 𝜑 → ( ( i · 𝑋 ) / 𝑋 ) = i ) |
| 32 |
28 30 31
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( i · 𝑋 ) ) = i ) |
| 33 |
26 32
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1 / 𝑋 ) · 1 ) − ( ( 1 / 𝑋 ) · ( i · 𝑋 ) ) ) = ( ( 1 / 𝑋 ) − i ) ) |
| 34 |
25 33
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( 1 − ( i · 𝑋 ) ) ) = ( ( 1 / 𝑋 ) − i ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( i + ( ( 1 / 𝑋 ) · ( 1 − ( i · 𝑋 ) ) ) ) = ( i + ( ( 1 / 𝑋 ) − i ) ) ) |
| 36 |
20 19
|
pncan3d |
⊢ ( 𝜑 → ( i + ( ( 1 / 𝑋 ) − i ) ) = ( 1 / 𝑋 ) ) |
| 37 |
24 35 36
|
3eqtrrd |
⊢ ( 𝜑 → ( 1 / 𝑋 ) = ( i + ( ( 1 / 𝑋 ) · ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) ) ) |
| 38 |
6
|
subid1d |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 39 |
38 6
|
eqeltrd |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 40 |
19 39
|
mulcld |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 41 |
40
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( 1 / 𝑋 ) · ( 1 − 0 ) ) ) = ( ( 1 / 𝑋 ) · ( 1 − 0 ) ) ) |
| 42 |
38
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 𝑋 ) · ( 1 − 0 ) ) = ( ( 1 / 𝑋 ) · 1 ) ) |
| 43 |
41 42 26
|
3eqtrrd |
⊢ ( 𝜑 → ( 1 / 𝑋 ) = ( 0 + ( ( 1 / 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 44 |
38
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · ( 1 − 0 ) ) = ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · 1 ) ) |
| 45 |
15
|
constrcn |
⊢ ( 𝜑 → ( i + ( 1 − ( i · 𝑋 ) ) ) ∈ ℂ ) |
| 46 |
45 20
|
subcld |
⊢ ( 𝜑 → ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ∈ ℂ ) |
| 47 |
46
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) ∈ ℂ ) |
| 48 |
47
|
mulridd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · 1 ) = ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) ) |
| 49 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) = ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) ) |
| 50 |
44 48 49
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · ( 1 − 0 ) ) = ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) ) |
| 51 |
50
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · ( 1 − 0 ) ) ) = ( ℑ ‘ ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) ) ) |
| 52 |
6 8
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝑋 ) ) ) ) |
| 53 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 54 |
53
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 1 ) = 1 ) |
| 55 |
20 27
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( i · 𝑋 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝑋 ) ) ) |
| 56 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
| 57 |
56
|
a1i |
⊢ ( 𝜑 → ( ∗ ‘ i ) = - i ) |
| 58 |
3
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) = 𝑋 ) |
| 59 |
57 58
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝑋 ) ) = ( - i · 𝑋 ) ) |
| 60 |
20 27
|
mulneg1d |
⊢ ( 𝜑 → ( - i · 𝑋 ) = - ( i · 𝑋 ) ) |
| 61 |
55 59 60
|
3eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( i · 𝑋 ) ) = - ( i · 𝑋 ) ) |
| 62 |
54 61
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝑋 ) ) ) = ( 1 − - ( i · 𝑋 ) ) ) |
| 63 |
6 8
|
subnegd |
⊢ ( 𝜑 → ( 1 − - ( i · 𝑋 ) ) = ( 1 + ( i · 𝑋 ) ) ) |
| 64 |
52 62 63
|
3eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) = ( 1 + ( i · 𝑋 ) ) ) |
| 65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ∗ ‘ ( 1 − ( i · 𝑋 ) ) ) ) = ( ℑ ‘ ( 1 + ( i · 𝑋 ) ) ) ) |
| 66 |
53 3
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( 1 + ( i · 𝑋 ) ) ) = 𝑋 ) |
| 67 |
51 65 66
|
3eqtrd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · ( 1 − 0 ) ) ) = 𝑋 ) |
| 68 |
67 2
|
eqnetrd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( ( i + ( 1 − ( i · 𝑋 ) ) ) − i ) ) · ( 1 − 0 ) ) ) ≠ 0 ) |
| 69 |
5 15 17 11 18 18 19 37 43 68
|
constrllcl |
⊢ ( 𝜑 → ( 1 / 𝑋 ) ∈ Constr ) |