Metamath Proof Explorer


Theorem constrreinvcl

Description: If a real number X is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses constrinvcl.1 φ X Constr
constrinvcl.2 φ X 0
constrreinvcl.3 φ X
Assertion constrreinvcl φ 1 X Constr

Proof

Step Hyp Ref Expression
1 constrinvcl.1 φ X Constr
2 constrinvcl.2 φ X 0
3 constrreinvcl.3 φ X
4 iconstr i Constr
5 4 a1i φ i Constr
6 1cnd φ 1
7 5 1 constrmulcl φ i X Constr
8 7 constrcn φ i X
9 6 8 negsubd φ 1 + i X = 1 i X
10 1zzd φ 1
11 10 zconstr φ 1 Constr
12 7 constrnegcl φ i X Constr
13 11 12 constraddcl φ 1 + i X Constr
14 9 13 eqeltrrd φ 1 i X Constr
15 5 14 constraddcl φ i + 1 - i X Constr
16 0zd φ 0
17 16 zconstr φ 0 Constr
18 3 2 rereccld φ 1 X
19 18 recnd φ 1 X
20 5 constrcn φ i
21 6 8 subcld φ 1 i X
22 20 21 pncan2d φ i + 1 i X - i = 1 i X
23 22 oveq2d φ 1 X i + 1 i X - i = 1 X 1 i X
24 23 oveq2d φ i + 1 X i + 1 i X - i = i + 1 X 1 i X
25 19 6 8 subdid φ 1 X 1 i X = 1 X 1 1 X i X
26 19 mulridd φ 1 X 1 = 1 X
27 3 recnd φ X
28 6 27 8 2 div32d φ 1 X i X = 1 i X X
29 8 27 2 divcld φ i X X
30 29 mullidd φ 1 i X X = i X X
31 20 27 2 divcan4d φ i X X = i
32 28 30 31 3eqtrd φ 1 X i X = i
33 26 32 oveq12d φ 1 X 1 1 X i X = 1 X i
34 25 33 eqtrd φ 1 X 1 i X = 1 X i
35 34 oveq2d φ i + 1 X 1 i X = i + 1 X - i
36 20 19 pncan3d φ i + 1 X - i = 1 X
37 24 35 36 3eqtrrd φ 1 X = i + 1 X i + 1 i X - i
38 6 subid1d φ 1 0 = 1
39 38 6 eqeltrd φ 1 0
40 19 39 mulcld φ 1 X 1 0
41 40 addlidd φ 0 + 1 X 1 0 = 1 X 1 0
42 38 oveq2d φ 1 X 1 0 = 1 X 1
43 41 42 26 3eqtrrd φ 1 X = 0 + 1 X 1 0
44 38 oveq2d φ i + 1 i X - i 1 0 = i + 1 i X - i 1
45 15 constrcn φ i + 1 - i X
46 45 20 subcld φ i + 1 i X - i
47 46 cjcld φ i + 1 i X - i
48 47 mulridd φ i + 1 i X - i 1 = i + 1 i X - i
49 22 fveq2d φ i + 1 i X - i = 1 i X
50 44 48 49 3eqtrd φ i + 1 i X - i 1 0 = 1 i X
51 50 fveq2d φ i + 1 i X - i 1 0 = 1 i X
52 6 8 cjsubd φ 1 i X = 1 i X
53 1red φ 1
54 53 cjred φ 1 = 1
55 20 27 cjmuld φ i X = i X
56 cji i = i
57 56 a1i φ i = i
58 3 cjred φ X = X
59 57 58 oveq12d φ i X = i X
60 20 27 mulneg1d φ i X = i X
61 55 59 60 3eqtrd φ i X = i X
62 54 61 oveq12d φ 1 i X = 1 i X
63 6 8 subnegd φ 1 i X = 1 + i X
64 52 62 63 3eqtrd φ 1 i X = 1 + i X
65 64 fveq2d φ 1 i X = 1 + i X
66 53 3 crimd φ 1 + i X = X
67 51 65 66 3eqtrd φ i + 1 i X - i 1 0 = X
68 67 2 eqnetrd φ i + 1 i X - i 1 0 0
69 5 15 17 11 18 18 19 37 43 68 constrllcl φ 1 X Constr