| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrinvcl.1 |
|
| 2 |
|
constrinvcl.2 |
|
| 3 |
|
constrreinvcl.3 |
|
| 4 |
|
iconstr |
|
| 5 |
4
|
a1i |
|
| 6 |
|
1cnd |
|
| 7 |
5 1
|
constrmulcl |
|
| 8 |
7
|
constrcn |
|
| 9 |
6 8
|
negsubd |
|
| 10 |
|
1zzd |
|
| 11 |
10
|
zconstr |
|
| 12 |
7
|
constrnegcl |
|
| 13 |
11 12
|
constraddcl |
|
| 14 |
9 13
|
eqeltrrd |
|
| 15 |
5 14
|
constraddcl |
|
| 16 |
|
0zd |
|
| 17 |
16
|
zconstr |
|
| 18 |
3 2
|
rereccld |
|
| 19 |
18
|
recnd |
|
| 20 |
5
|
constrcn |
|
| 21 |
6 8
|
subcld |
|
| 22 |
20 21
|
pncan2d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
19 6 8
|
subdid |
|
| 26 |
19
|
mulridd |
|
| 27 |
3
|
recnd |
|
| 28 |
6 27 8 2
|
div32d |
|
| 29 |
8 27 2
|
divcld |
|
| 30 |
29
|
mullidd |
|
| 31 |
20 27 2
|
divcan4d |
|
| 32 |
28 30 31
|
3eqtrd |
|
| 33 |
26 32
|
oveq12d |
|
| 34 |
25 33
|
eqtrd |
|
| 35 |
34
|
oveq2d |
|
| 36 |
20 19
|
pncan3d |
|
| 37 |
24 35 36
|
3eqtrrd |
|
| 38 |
6
|
subid1d |
|
| 39 |
38 6
|
eqeltrd |
|
| 40 |
19 39
|
mulcld |
|
| 41 |
40
|
addlidd |
|
| 42 |
38
|
oveq2d |
|
| 43 |
41 42 26
|
3eqtrrd |
|
| 44 |
38
|
oveq2d |
|
| 45 |
15
|
constrcn |
|
| 46 |
45 20
|
subcld |
|
| 47 |
46
|
cjcld |
|
| 48 |
47
|
mulridd |
|
| 49 |
22
|
fveq2d |
|
| 50 |
44 48 49
|
3eqtrd |
|
| 51 |
50
|
fveq2d |
|
| 52 |
6 8
|
cjsubd |
|
| 53 |
|
1red |
|
| 54 |
53
|
cjred |
|
| 55 |
20 27
|
cjmuld |
|
| 56 |
|
cji |
|
| 57 |
56
|
a1i |
|
| 58 |
3
|
cjred |
|
| 59 |
57 58
|
oveq12d |
|
| 60 |
20 27
|
mulneg1d |
|
| 61 |
55 59 60
|
3eqtrd |
|
| 62 |
54 61
|
oveq12d |
|
| 63 |
6 8
|
subnegd |
|
| 64 |
52 62 63
|
3eqtrd |
|
| 65 |
64
|
fveq2d |
|
| 66 |
53 3
|
crimd |
|
| 67 |
51 65 66
|
3eqtrd |
|
| 68 |
67 2
|
eqnetrd |
|
| 69 |
5 15 17 11 18 18 19 37 43 68
|
constrllcl |
|