Metamath Proof Explorer


Theorem 2sqr3minply

Description: The polynomial ( ( X ^ 3 ) - 2 ) is the minimal polynomial for ( 2 ^c ( 1 / 3 ) ) over QQ , and its degree is 3 . (Contributed by Thierry Arnoux, 14-Jun-2025)

Ref Expression
Hypotheses 2sqr3minply.q Q = fld 𝑠
2sqr3minply.1 - ˙ = - P
2sqr3minply.2 × ˙ = mulGrp P
2sqr3minply.p P = Poly 1 Q
2sqr3minply.k K = algSc P
2sqr3minply.x X = var 1 Q
2sqr3minply.d D = deg 1 Q
2sqr3minply.f F = 3 × ˙ X - ˙ K 2
2sqr3minply.a A = 2 1 3
2sqr3minply.m M = fld minPoly
Assertion 2sqr3minply F = M A D F = 3

Proof

Step Hyp Ref Expression
1 2sqr3minply.q Q = fld 𝑠
2 2sqr3minply.1 - ˙ = - P
3 2sqr3minply.2 × ˙ = mulGrp P
4 2sqr3minply.p P = Poly 1 Q
5 2sqr3minply.k K = algSc P
6 2sqr3minply.x X = var 1 Q
7 2sqr3minply.d D = deg 1 Q
8 2sqr3minply.f F = 3 × ˙ X - ˙ K 2
9 2sqr3minply.a A = 2 1 3
10 2sqr3minply.m M = fld minPoly
11 eqid fld evalSub 1 = fld evalSub 1
12 1 fveq2i Poly 1 Q = Poly 1 fld 𝑠
13 4 12 eqtri P = Poly 1 fld 𝑠
14 cnfldbas = Base fld
15 cndrng fld DivRing
16 cncrng fld CRing
17 isfld fld Field fld DivRing fld CRing
18 15 16 17 mpbir2an fld Field
19 18 a1i fld Field
20 qsubdrg SubRing fld fld 𝑠 DivRing
21 20 simpli SubRing fld
22 20 simpri fld 𝑠 DivRing
23 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
24 15 21 22 23 mpbir3an SubDRing fld
25 24 a1i SubDRing fld
26 2cn 2
27 3cn 3
28 3ne0 3 0
29 27 28 reccli 1 3
30 cxpcl 2 1 3 2 1 3
31 26 29 30 mp2an 2 1 3
32 9 31 eqeltri A
33 32 a1i A
34 cnfld0 0 = 0 fld
35 eqid 0 P = 0 P
36 8 fveq2i fld evalSub 1 F = fld evalSub 1 3 × ˙ X - ˙ K 2
37 36 fveq1i fld evalSub 1 F A = fld evalSub 1 3 × ˙ X - ˙ K 2 A
38 37 a1i fld evalSub 1 F A = fld evalSub 1 3 × ˙ X - ˙ K 2 A
39 eqid Base P = Base P
40 cnfldsub = - fld
41 16 a1i fld CRing
42 21 a1i SubRing fld
43 eqid mulGrp P = mulGrp P
44 43 39 mgpbas Base P = Base mulGrp P
45 1 qdrng Q DivRing
46 45 a1i Q DivRing
47 46 drngringd Q Ring
48 4 ply1ring Q Ring P Ring
49 47 48 syl P Ring
50 43 ringmgp P Ring mulGrp P Mnd
51 49 50 syl mulGrp P Mnd
52 3nn0 3 0
53 52 a1i 3 0
54 6 4 39 vr1cl Q Ring X Base P
55 47 54 syl X Base P
56 44 3 51 53 55 mulgnn0cld 3 × ˙ X Base P
57 47 mptru Q Ring
58 4 ply1sca Q Ring Q = Scalar P
59 57 58 ax-mp Q = Scalar P
60 4 ply1lmod Q Ring P LMod
61 47 60 syl P LMod
62 1 qrngbas = Base Q
63 5 59 49 61 62 39 asclf K : Base P
64 2z 2
65 zq 2 2
66 64 65 mp1i 2
67 63 66 ffvelcdmd K 2 Base P
68 11 14 4 1 39 2 40 41 42 56 67 33 evls1subd fld evalSub 1 3 × ˙ X - ˙ K 2 A = fld evalSub 1 3 × ˙ X A fld evalSub 1 K 2 A
69 eqid mulGrp fld = mulGrp fld
70 11 14 4 1 39 41 42 3 69 53 55 33 evls1expd fld evalSub 1 3 × ˙ X A = 3 mulGrp fld fld evalSub 1 X A
71 11 6 1 14 41 42 evls1var fld evalSub 1 X = I
72 71 fveq1d fld evalSub 1 X A = I A
73 fvresi A I A = A
74 32 73 mp1i I A = A
75 72 74 eqtrd fld evalSub 1 X A = A
76 75 oveq2d 3 mulGrp fld fld evalSub 1 X A = 3 mulGrp fld A
77 cnfldexp A 3 0 3 mulGrp fld A = A 3
78 33 53 77 syl2anc 3 mulGrp fld A = A 3
79 70 76 78 3eqtrd fld evalSub 1 3 × ˙ X A = A 3
80 9 oveq1i A 3 = 2 1 3 3
81 3nn 3
82 cxproot 2 3 2 1 3 3 = 2
83 26 81 82 mp2an 2 1 3 3 = 2
84 80 83 eqtri A 3 = 2
85 79 84 eqtrdi fld evalSub 1 3 × ˙ X A = 2
86 11 4 1 14 5 41 42 66 33 evls1scafv fld evalSub 1 K 2 A = 2
87 85 86 oveq12d fld evalSub 1 3 × ˙ X A fld evalSub 1 K 2 A = 2 2
88 26 subidi 2 2 = 0
89 87 88 eqtrdi fld evalSub 1 3 × ˙ X A fld evalSub 1 K 2 A = 0
90 38 68 89 3eqtrd fld evalSub 1 F A = 0
91 1 qrng0 0 = 0 Q
92 eqid eval 1 Q = eval 1 Q
93 fldsdrgfld fld Field SubDRing fld fld 𝑠 Field
94 18 24 93 mp2an fld 𝑠 Field
95 1 94 eqeltri Q Field
96 95 a1i Q Field
97 49 ringgrpd P Grp
98 39 2 grpsubcl P Grp 3 × ˙ X Base P K 2 Base P 3 × ˙ X - ˙ K 2 Base P
99 97 56 67 98 syl3anc 3 × ˙ X - ˙ K 2 Base P
100 8 99 eqeltrid F Base P
101 96 fldcrngd Q CRing
102 92 4 39 101 62 100 evl1fvf eval 1 Q F :
103 102 ffnd eval 1 Q F Fn
104 fniniseg2 eval 1 Q F Fn eval 1 Q F -1 0 = x | eval 1 Q F x = 0
105 103 104 syl eval 1 Q F -1 0 = x | eval 1 Q F x = 0
106 cnfldmul × = fld
107 1 106 ressmulr SubRing fld × = Q
108 21 107 ax-mp × = Q
109 cnfldadd + = + fld
110 1 109 ressplusg SubRing fld + = + Q
111 21 110 ax-mp + = + Q
112 eqid mulGrp Q = mulGrp Q
113 eqid coe 1 F = coe 1 F
114 8 fveq2i coe 1 F = coe 1 3 × ˙ X - ˙ K 2
115 114 a1i coe 1 F = coe 1 3 × ˙ X - ˙ K 2
116 8 fveq2i D F = D 3 × ˙ X - ˙ K 2
117 116 a1i D F = D 3 × ˙ X - ˙ K 2
118 3pos 0 < 3
119 118 a1i 0 < 3
120 2ne0 2 0
121 120 a1i 2 0
122 7 4 62 5 91 deg1scl Q Ring 2 2 0 D K 2 = 0
123 47 66 121 122 syl3anc D K 2 = 0
124 drngnzr Q DivRing Q NzRing
125 45 124 mp1i Q NzRing
126 7 4 6 43 3 deg1pw Q NzRing 3 0 D 3 × ˙ X = 3
127 125 53 126 syl2anc D 3 × ˙ X = 3
128 119 123 127 3brtr4d D K 2 < D 3 × ˙ X
129 4 7 47 39 2 56 67 128 deg1sub D 3 × ˙ X - ˙ K 2 = D 3 × ˙ X
130 117 129 127 3eqtrd D F = 3
131 115 130 fveq12d coe 1 F D F = coe 1 3 × ˙ X - ˙ K 2 3
132 eqid - Q = - Q
133 4 39 2 132 coe1subfv Q Ring 3 × ˙ X Base P K 2 Base P 3 0 coe 1 3 × ˙ X - ˙ K 2 3 = coe 1 3 × ˙ X 3 - Q coe 1 K 2 3
134 47 56 67 53 133 syl31anc coe 1 3 × ˙ X - ˙ K 2 3 = coe 1 3 × ˙ X 3 - Q coe 1 K 2 3
135 subrgsubg SubRing fld SubGrp fld
136 21 135 mp1i SubGrp fld
137 eqid coe 1 3 × ˙ X = coe 1 3 × ˙ X
138 137 39 4 62 coe1fvalcl 3 × ˙ X Base P 3 0 coe 1 3 × ˙ X 3
139 56 53 138 syl2anc coe 1 3 × ˙ X 3
140 eqid coe 1 K 2 = coe 1 K 2
141 140 39 4 62 coe1fvalcl K 2 Base P 3 0 coe 1 K 2 3
142 67 53 141 syl2anc coe 1 K 2 3
143 40 1 132 subgsub SubGrp fld coe 1 3 × ˙ X 3 coe 1 K 2 3 coe 1 3 × ˙ X 3 coe 1 K 2 3 = coe 1 3 × ˙ X 3 - Q coe 1 K 2 3
144 136 139 142 143 syl3anc coe 1 3 × ˙ X 3 coe 1 K 2 3 = coe 1 3 × ˙ X 3 - Q coe 1 K 2 3
145 iftrue i = 3 if i = 3 1 0 = 1
146 1 qrng1 1 = 1 Q
147 4 6 3 47 53 91 146 coe1mon coe 1 3 × ˙ X = i 0 if i = 3 1 0
148 1cnd 1
149 145 147 53 148 fvmptd4 coe 1 3 × ˙ X 3 = 1
150 28 neii ¬ 3 = 0
151 eqeq1 i = 3 i = 0 3 = 0
152 150 151 mtbiri i = 3 ¬ i = 0
153 152 iffalsed i = 3 if i = 0 2 0 = 0
154 4 5 62 91 coe1scl Q Ring 2 coe 1 K 2 = i 0 if i = 0 2 0
155 47 66 154 syl2anc coe 1 K 2 = i 0 if i = 0 2 0
156 0nn0 0 0
157 156 a1i 0 0
158 153 155 53 157 fvmptd4 coe 1 K 2 3 = 0
159 149 158 oveq12d coe 1 3 × ˙ X 3 coe 1 K 2 3 = 1 0
160 1m0e1 1 0 = 1
161 159 160 eqtrdi coe 1 3 × ˙ X 3 coe 1 K 2 3 = 1
162 144 161 eqtr3d coe 1 3 × ˙ X 3 - Q coe 1 K 2 3 = 1
163 131 134 162 3eqtrd coe 1 F D F = 1
164 130 fveq2d coe 1 F D F = coe 1 F 3
165 163 164 eqtr3d 1 = coe 1 F 3
166 165 mptru 1 = coe 1 F 3
167 115 fveq1d coe 1 F 2 = coe 1 3 × ˙ X - ˙ K 2 2
168 2nn0 2 0
169 168 a1i 2 0
170 4 39 2 132 coe1subfv Q Ring 3 × ˙ X Base P K 2 Base P 2 0 coe 1 3 × ˙ X - ˙ K 2 2 = coe 1 3 × ˙ X 2 - Q coe 1 K 2 2
171 47 56 67 169 170 syl31anc coe 1 3 × ˙ X - ˙ K 2 2 = coe 1 3 × ˙ X 2 - Q coe 1 K 2 2
172 2re 2
173 2lt3 2 < 3
174 172 173 ltneii 2 3
175 neeq1 i = 2 i 3 2 3
176 174 175 mpbiri i = 2 i 3
177 176 adantl i = 2 i 3
178 177 neneqd i = 2 ¬ i = 3
179 178 iffalsed i = 2 if i = 3 1 0 = 0
180 147 179 169 157 fvmptd coe 1 3 × ˙ X 2 = 0
181 neeq1 i = 2 i 0 2 0
182 120 181 mpbiri i = 2 i 0
183 182 neneqd i = 2 ¬ i = 0
184 183 adantl i = 2 ¬ i = 0
185 184 iffalsed i = 2 if i = 0 2 0 = 0
186 155 185 169 157 fvmptd coe 1 K 2 2 = 0
187 180 186 oveq12d coe 1 3 × ˙ X 2 - Q coe 1 K 2 2 = 0 - Q 0
188 171 187 eqtrd coe 1 3 × ˙ X - ˙ K 2 2 = 0 - Q 0
189 158 142 eqeltrrd 0
190 40 1 132 subgsub SubGrp fld 0 0 0 0 = 0 - Q 0
191 136 189 189 190 syl3anc 0 0 = 0 - Q 0
192 0m0e0 0 0 = 0
193 191 192 eqtr3di 0 - Q 0 = 0
194 167 188 193 3eqtrrd 0 = coe 1 F 2
195 194 mptru 0 = coe 1 F 2
196 115 fveq1d coe 1 F 1 = coe 1 3 × ˙ X - ˙ K 2 1
197 1nn0 1 0
198 197 a1i 1 0
199 4 39 2 132 coe1subfv Q Ring 3 × ˙ X Base P K 2 Base P 1 0 coe 1 3 × ˙ X - ˙ K 2 1 = coe 1 3 × ˙ X 1 - Q coe 1 K 2 1
200 47 56 67 198 199 syl31anc coe 1 3 × ˙ X - ˙ K 2 1 = coe 1 3 × ˙ X 1 - Q coe 1 K 2 1
201 1re 1
202 1lt3 1 < 3
203 201 202 ltneii 1 3
204 neeq1 i = 1 i 3 1 3
205 203 204 mpbiri i = 1 i 3
206 205 neneqd i = 1 ¬ i = 3
207 206 adantl i = 1 ¬ i = 3
208 207 iffalsed i = 1 if i = 3 1 0 = 0
209 147 208 198 157 fvmptd coe 1 3 × ˙ X 1 = 0
210 ax-1ne0 1 0
211 neeq1 i = 1 i 0 1 0
212 210 211 mpbiri i = 1 i 0
213 212 neneqd i = 1 ¬ i = 0
214 213 adantl i = 1 ¬ i = 0
215 214 iffalsed i = 1 if i = 0 2 0 = 0
216 155 215 198 157 fvmptd coe 1 K 2 1 = 0
217 209 216 oveq12d coe 1 3 × ˙ X 1 - Q coe 1 K 2 1 = 0 - Q 0
218 200 217 eqtrd coe 1 3 × ˙ X - ˙ K 2 1 = 0 - Q 0
219 196 218 193 3eqtrrd 0 = coe 1 F 1
220 219 mptru 0 = coe 1 F 1
221 115 fveq1d coe 1 F 0 = coe 1 3 × ˙ X - ˙ K 2 0
222 4 39 2 132 coe1subfv Q Ring 3 × ˙ X Base P K 2 Base P 0 0 coe 1 3 × ˙ X - ˙ K 2 0 = coe 1 3 × ˙ X 0 - Q coe 1 K 2 0
223 47 56 67 157 222 syl31anc coe 1 3 × ˙ X - ˙ K 2 0 = coe 1 3 × ˙ X 0 - Q coe 1 K 2 0
224 28 necomi 0 3
225 neeq1 i = 0 i 3 0 3
226 224 225 mpbiri i = 0 i 3
227 226 neneqd i = 0 ¬ i = 3
228 227 adantl i = 0 ¬ i = 3
229 228 iffalsed i = 0 if i = 3 1 0 = 0
230 147 229 157 157 fvmptd coe 1 3 × ˙ X 0 = 0
231 simpr i = 0 i = 0
232 231 iftrued i = 0 if i = 0 2 0 = 2
233 155 232 157 169 fvmptd coe 1 K 2 0 = 2
234 230 233 oveq12d coe 1 3 × ˙ X 0 - Q coe 1 K 2 0 = 0 - Q 2
235 223 234 eqtrd coe 1 3 × ˙ X - ˙ K 2 0 = 0 - Q 2
236 df-neg 2 = 0 2
237 40 1 132 subgsub SubGrp fld 0 2 0 2 = 0 - Q 2
238 136 189 66 237 syl3anc 0 2 = 0 - Q 2
239 236 238 eqtr2id 0 - Q 2 = 2
240 221 235 239 3eqtrrd 2 = coe 1 F 0
241 240 mptru 2 = coe 1 F 0
242 95 a1i x Q Field
243 242 fldcrngd x Q CRing
244 100 mptru F Base P
245 244 a1i x F Base P
246 130 mptru D F = 3
247 246 a1i x D F = 3
248 id x x
249 4 92 62 39 108 111 112 113 7 166 195 220 241 243 245 247 248 evl1deg3 x eval 1 Q F x = 1 3 mulGrp Q x + 0 2 mulGrp Q x + 0 x + -2
250 qsscn
251 eqid mulGrp fld 𝑠 = mulGrp fld 𝑠
252 eqid mulGrp fld = mulGrp fld
253 252 14 mgpbas = Base mulGrp fld
254 251 253 ressbas2 = Base mulGrp fld 𝑠
255 250 254 ax-mp = Base mulGrp fld 𝑠
256 1 252 mgpress fld DivRing SubRing fld mulGrp fld 𝑠 = mulGrp Q
257 15 21 256 mp2an mulGrp fld 𝑠 = mulGrp Q
258 257 fveq2i Base mulGrp fld 𝑠 = Base mulGrp Q
259 255 258 eqtri = Base mulGrp Q
260 eqid mulGrp Q = mulGrp Q
261 260 ringmgp Q Ring mulGrp Q Mnd
262 57 261 mp1i x mulGrp Q Mnd
263 52 a1i x 3 0
264 259 112 262 263 248 mulgnn0cld x 3 mulGrp Q x
265 250 264 sselid x 3 mulGrp Q x
266 265 mullidd x 1 3 mulGrp Q x = 3 mulGrp Q x
267 257 eqcomi mulGrp Q = mulGrp fld 𝑠
268 250 253 sseqtri Base mulGrp fld
269 268 a1i x Base mulGrp fld
270 81 a1i x 3
271 267 269 248 270 ressmulgnnd x 3 mulGrp Q x = 3 mulGrp fld x
272 qcn x x
273 cnfldexp x 3 0 3 mulGrp fld x = x 3
274 272 263 273 syl2anc x 3 mulGrp fld x = x 3
275 266 271 274 3eqtrd x 1 3 mulGrp Q x = x 3
276 168 a1i x 2 0
277 259 112 262 276 248 mulgnn0cld x 2 mulGrp Q x
278 250 277 sselid x 2 mulGrp Q x
279 278 mul02d x 0 2 mulGrp Q x = 0
280 275 279 oveq12d x 1 3 mulGrp Q x + 0 2 mulGrp Q x = x 3 + 0
281 272 263 expcld x x 3
282 281 addridd x x 3 + 0 = x 3
283 280 282 eqtrd x 1 3 mulGrp Q x + 0 2 mulGrp Q x = x 3
284 272 mul02d x 0 x = 0
285 284 oveq1d x 0 x + -2 = 0 + -2
286 26 a1i x 2
287 286 negcld x 2
288 287 addlidd x 0 + -2 = 2
289 285 288 eqtrd x 0 x + -2 = 2
290 283 289 oveq12d x 1 3 mulGrp Q x + 0 2 mulGrp Q x + 0 x + -2 = x 3 + -2
291 281 286 negsubd x x 3 + -2 = x 3 2
292 249 290 291 3eqtrd x eval 1 Q F x = x 3 2
293 2prm 2
294 3z 3
295 3re 3
296 172 295 173 ltleii 2 3
297 64 eluz1i 3 2 3 2 3
298 294 296 297 mpbir2an 3 2
299 rtprmirr 2 3 2 2 1 3
300 293 298 299 mp2an 2 1 3
301 eldifn 2 1 3 ¬ 2 1 3
302 300 301 ax-mp ¬ 2 1 3
303 nelne2 x ¬ 2 1 3 x 2 1 3
304 302 303 mpan2 x x 2 1 3
305 qre x x
306 305 adantr x x 3 2 = 0 x
307 2pos 0 < 2
308 281 286 subeq0ad x x 3 2 = 0 x 3 = 2
309 308 biimpa x x 3 2 = 0 x 3 = 2
310 307 309 breqtrrid x x 3 2 = 0 0 < x 3
311 81 a1i x x 3 2 = 0 3
312 n2dvds3 ¬ 2 3
313 312 a1i x x 3 2 = 0 ¬ 2 3
314 306 311 313 expgt0b x x 3 2 = 0 0 < x 0 < x 3
315 310 314 mpbird x x 3 2 = 0 0 < x
316 306 315 elrpd x x 3 2 = 0 x +
317 295 a1i x x 3 2 = 0 3
318 29 a1i x x 3 2 = 0 1 3
319 316 317 318 cxpmuld x x 3 2 = 0 x 3 1 3 = x 3 1 3
320 27 a1i x 3
321 28 a1i x 3 0
322 320 321 recidd x 3 1 3 = 1
323 322 oveq2d x x 3 1 3 = x 1
324 272 cxp1d x x 1 = x
325 323 324 eqtrd x x 3 1 3 = x
326 325 adantr x x 3 2 = 0 x 3 1 3 = x
327 cxpexp x 3 0 x 3 = x 3
328 272 263 327 syl2anc x x 3 = x 3
329 328 oveq1d x x 3 1 3 = x 3 1 3
330 329 adantr x x 3 2 = 0 x 3 1 3 = x 3 1 3
331 319 326 330 3eqtr3rd x x 3 2 = 0 x 3 1 3 = x
332 309 oveq1d x x 3 2 = 0 x 3 1 3 = 2 1 3
333 331 332 eqtr3d x x 3 2 = 0 x = 2 1 3
334 304 333 mteqand x x 3 2 0
335 292 334 eqnetrd x eval 1 Q F x 0
336 335 neneqd x ¬ eval 1 Q F x = 0
337 336 rgen x ¬ eval 1 Q F x = 0
338 337 a1i x ¬ eval 1 Q F x = 0
339 rabeq0 x | eval 1 Q F x = 0 = x ¬ eval 1 Q F x = 0
340 338 339 sylibr x | eval 1 Q F x = 0 =
341 105 340 eqtrd eval 1 Q F -1 0 =
342 91 92 7 4 39 96 100 341 130 ply1dg3rt0irred F Irred P
343 eqid Irred P = Irred P
344 343 35 irredn0 P Ring F Irred P F 0 P
345 49 342 344 syl2anc F 0 P
346 1 fveq2i deg 1 Q = deg 1 fld 𝑠
347 7 346 eqtri D = deg 1 fld 𝑠
348 eqid Monic 1p fld 𝑠 = Monic 1p fld 𝑠
349 eqid fld 𝑠 = fld 𝑠
350 349 qrng1 1 = 1 fld 𝑠
351 13 39 35 347 348 350 ismon1p F Monic 1p fld 𝑠 F Base P F 0 P coe 1 F D F = 1
352 100 345 163 351 syl3anbrc F Monic 1p fld 𝑠
353 11 13 14 19 25 33 34 10 35 90 342 352 irredminply F = M A
354 353 130 jca F = M A D F = 3
355 354 mptru F = M A D F = 3